Semicomma family: Difference between revisions
Wikispaces>Andrew_Heathwaite **Imported revision 151402009 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 164175691 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-09-21 04:20:41 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>164175691</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 9: | Line 9: | ||
==Seven limit children== | ==Seven limit children== | ||
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 64625 | The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&159 temperament with wedgie <<21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&243 temperament with wedgie <<28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&243 temperament with wedgie <<7 -3 61 -21 77 150||. | ||
===Orwell=== | ===Orwell=== | ||
So called because 19/84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53-EDO]] and [[84edo]], and may be described as the 22&31 temperament, or . It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. [[53edo]] may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma. | So called because 19/84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53-EDO]] and [[84edo]], and may be described as the 22&31 temperament, or <<7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. [[53edo]] may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma. | ||
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell. | The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell. | ||
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything. | Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything. | ||
===Vital statistics=== | |||
Commas: 225/224, 1728/1715 | |||
7-limit | |||
Eigenmonzos: 2, 7/5 | |||
9-limit | |||
Eigenmonzos: 2, 10/9 | |||
11-limit | |||
Commas: 99/98, 121/120, 176/175 | |||
Minimax tuning | |||
Eigenmonzos: 2, 7/5 | |||
Map: [<1 0 3 1 3|, <0 7 -3 8 2|] | |||
Edos: 31, 53, 84 | |||
==Music== | ==Music== | ||
Line 25: | Line 43: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2> | ||
The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Adding 64625 | The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Seven limit children-Orwell"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orwell</h3> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Seven limit children-Orwell"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orwell</h3> | ||
So called because 19/84 (as a <a class="wiki_link" href="/fraction%20of%20the%20octave">fraction of the octave</a>) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53-EDO</a> and <a class="wiki_link" href="/84edo">84edo</a>, and may be described as the 22&amp;31 temperament, or . It's a good system in the <a class="wiki_link" href="/7-limit">7-limit</a> and naturally extends into the <a class="wiki_link" href="/11-limit">11-limit</a>. <a class="wiki_link" href="/84edo">84edo</a>, with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. <a class="wiki_link" href="/53edo">53edo</a> may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.<br /> | So called because 19/84 (as a <a class="wiki_link" href="/fraction%20of%20the%20octave">fraction of the octave</a>) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53-EDO</a> and <a class="wiki_link" href="/84edo">84edo</a>, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the <a class="wiki_link" href="/7-limit">7-limit</a> and naturally extends into the <a class="wiki_link" href="/11-limit">11-limit</a>. <a class="wiki_link" href="/84edo">84edo</a>, with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. <a class="wiki_link" href="/53edo">53edo</a> may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.<br /> | ||
<br /> | <br /> | ||
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.<br /> | The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.<br /> | ||
Line 34: | Line 52: | ||
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.<br /> | Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id=" | <!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc2"><a name="x-Seven limit children-Vital statistics"></a><!-- ws:end:WikiTextHeadingRule:4 -->Vital statistics</h3> | ||
<!-- ws:start:WikiTextUrlRule: | Commas: 225/224, 1728/1715<br /> | ||
<br /> | |||
7-limit<br /> | |||
Eigenmonzos: 2, 7/5<br /> | |||
<br /> | |||
9-limit<br /> | |||
Eigenmonzos: 2, 10/9<br /> | |||
<br /> | |||
11-limit<br /> | |||
Commas: 99/98, 121/120, 176/175<br /> | |||
<br /> | |||
Minimax tuning<br /> | |||
Eigenmonzos: 2, 7/5<br /> | |||
<br /> | |||
Map: [&lt;1 0 3 1 3|, &lt;0 7 -3 8 2|]<br /> | |||
Edos: 31, 53, 84<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x-Music"></a><!-- ws:end:WikiTextHeadingRule:6 -->Music</h2> | |||
<!-- ws:start:WikiTextUrlRule:54:http://www.archive.org/details/TrioInOrwell --><a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow">http://www.archive.org/details/TrioInOrwell</a><!-- ws:end:WikiTextUrlRule:54 --><br /> | |||
<a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101705" rel="nofollow">one drop of rain</a>, <a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101704" rel="nofollow">i've come with a bucket of roses</a>, and <a class="wiki_link_ext" href="http://soundclick.com/share?songid=8839071" rel="nofollow">my own house</a> by Andrew Heathwaite</body></html></pre></div> | <a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101705" rel="nofollow">one drop of rain</a>, <a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101704" rel="nofollow">i've come with a bucket of roses</a>, and <a class="wiki_link_ext" href="http://soundclick.com/share?songid=8839071" rel="nofollow">my own house</a> by Andrew Heathwaite</body></html></pre></div> |