|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | __FORCETOC__ |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | =Orson= |
| : This revision was by author [[User:hearneg|hearneg]] and made on <tt>2014-10-12 11:26:53 UTC</tt>.<br>
| | The 5-limit parent comma for the '''semicomma family''' is the semicomma, 2109375/2097152 = |-21 3 7>. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor sixths. '''Orson''', the [[5-limit|5-limit]] temperament tempering it out, has a [[generator|generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo|53edo]] or [[84edo|84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent|cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell. |
| : The original revision id was <tt>526123066</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
| |
| =Orson= | |
| The 5-limit parent comma for the **semicomma family** is the semicomma, 2109375/2097152 = |-21 3 7>. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor sixths. **Orson**, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell. | |
|
| |
|
| Comma: 2109375/2097152 | | Comma: 2109375/2097152 |
|
| |
|
| [[Tuning Ranges of Regular Temperaments|valid range]]: [257.143, 276.923] (14b to 13) | | [[Tuning_Ranges_of_Regular_Temperaments|valid range]]: [257.143, 276.923] (14b to 13) |
| | |
| nice range: [271.229, 271.708] | | nice range: [271.229, 271.708] |
| | |
| strict range: [271.229, 271.708] | | strict range: [271.229, 271.708] |
|
| |
|
| [[POTE tuning|POTE generator]]: ~75/64 = 271.627 | | [[POTE_tuning|POTE generator]]: ~75/64 = 271.627 |
|
| |
|
| Map: [<1 0 3|, <0 7 -3|] | | Map: [<1 0 3|, <0 7 -3|] |
| | |
| EDOs: 22, 31, 53, 190, 243, 296, 645c | | EDOs: 22, 31, 53, 190, 243, 296, 645c |
| | |
| Badness: 0.0408 | | Badness: 0.0408 |
|
| |
|
| ==Seven limit children== | | ==Seven limit children== |
| The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&159 temperament with wedgie <<21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&243 temperament with wedgie <<28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&243 temperament with wedgie <<7 -3 61 -21 77 150||. | | The second comma of the [[Normal_lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&159 temperament with wedgie <<21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&243 temperament with wedgie <<28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&243 temperament with wedgie <<7 -3 61 -21 77 150||. |
|
| |
|
| =Orwell= | | =Orwell= |
| Main article: [[Orwell]] | | Main article: [[Orwell|Orwell]] |
| So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&31 temperament, or <<7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma. | | |
| | So called because 19\84 (as a [[fraction_of_the_octave|fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&31 temperament, or <<7 -3 8 -21 -7 27||. It's a good system in the [[7-limit|7-limit]] and naturally extends into the [[11-limit|11-limit]]. [[84edo|84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE_tuning|POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo|53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma. |
|
| |
|
| The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell. | | The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell. |
|
| |
|
| Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning 12edo to Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything. | | Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning_12edo_to_Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything. |
|
| |
|
| [[Comma|Commas]]: 225/224, 1728/1715 | | [[Comma|Commas]]: 225/224, 1728/1715 |
|
| |
|
| 7-limit | | 7-limit |
| | |
| [|1 0 0 0>, |14/11 0 -7/11 7/11>, | | [|1 0 0 0>, |14/11 0 -7/11 7/11>, |
| |27/11 0 3/11 -3/11>, |27/11 0 -8/11 8/11>] | | |27/11 0 3/11 -3/11>, |27/11 0 -8/11 8/11>] |
| [[Fractional monzos|Eigenmonzos]]: 2, 7/5 | | |
| | [[Fractional_monzos|Eigenmonzos]]: 2, 7/5 |
|
| |
|
| 9-limit | | 9-limit |
| | |
| [|1 0 0 0>, |21/17 14/17 -7/17 0>, | | [|1 0 0 0>, |21/17 14/17 -7/17 0>, |
| |42/17 -6/17 3/17 0>, |41/17 16/17 -8/17 0>] | | |42/17 -6/17 3/17 0>, |41/17 16/17 -8/17 0>] |
| | |
| [[Eigenmonzo|Eigenmonzos]]: 2, 10/9 | | [[Eigenmonzo|Eigenmonzos]]: 2, 10/9 |
|
| |
|
| valid range: [266.667, 272.727] (9 to 22) | | valid range: [266.667, 272.727] (9 to 22) |
| | |
| nice range: [266.871, 271.708] | | nice range: [266.871, 271.708] |
| | |
| strict range: [266.871, 271.708] | | strict range: [266.871, 271.708] |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 271.509 | | [[POTE_tuning|POTE generator]]: ~7/6 = 271.509 |
| | |
| Algebraic generators: Sabra3, the real root of 12x^3-7x-48. | | Algebraic generators: Sabra3, the real root of 12x^3-7x-48. |
|
| |
|
| Map: [<1 0 3 1|, <0 7 -3 8|] | | Map: [<1 0 3 1|, <0 7 -3 8|] |
| | |
| Wedgie: <<7 -3 8 -21 -7 27|| | | Wedgie: <<7 -3 8 -21 -7 27|| |
| | |
| EDOs: 22, 31, 53, 84, 137, 221d, 358d | | EDOs: 22, 31, 53, 84, 137, 221d, 358d |
| | |
| Badness: 0.0207 | | Badness: 0.0207 |
|
| |
|
| ==11-limit== | | ==11-limit== |
| [[Comma|Commas]]: 99/98, 121/120, 176/175 | | [[Comma|Commas]]: 99/98, 121/120, 176/175 |
|
| |
|
| [[Minimax tuning]] | | [[Minimax_tuning|Minimax tuning]] |
| | |
| [|1 0 0 0 0>, |14/11 0 -7/11 7/11 0>, |27/11 0 3/11 -3/11 0>, | | [|1 0 0 0 0>, |14/11 0 -7/11 7/11 0>, |27/11 0 3/11 -3/11 0>, |
| |27/11 0 -8/11 8/11 0>, |37/11 0 -2/11 2/11 0>] | | |27/11 0 -8/11 8/11 0>, |37/11 0 -2/11 2/11 0>] |
| | |
| [[Eigenmonzo|Eigenmonzos]]: 2, 7/5 | | [[Eigenmonzo|Eigenmonzos]]: 2, 7/5 |
|
| |
|
| valid range: [270.968, 272.727] (31 to 22) | | valid range: [270.968, 272.727] (31 to 22) |
| | |
| nice range: [266.871, 275.659] | | nice range: [266.871, 275.659] |
| | |
| strict range: [270.968, 272.727] | | strict range: [270.968, 272.727] |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 271.426 | | [[POTE_tuning|POTE generator]]: ~7/6 = 271.426 |
|
| |
|
| Map: [<1 0 3 1 3|, <0 7 -3 8 2|] | | Map: [<1 0 3 1 3|, <0 7 -3 8 2|] |
| [[edo|Edos]]: [[22edo|22]], [[31edo|31]], [[53edo|53]], [[84edo|84e]] | | |
| | [[EDO|Edos]]: [[22edo|22]], [[31edo|31]], [[53edo|53]], [[84edo|84e]] |
| | |
| Badness: 0.0152 | | Badness: 0.0152 |
|
| |
|
| ==13-limit== | | ==13-limit== |
| Commas: 99/98, 121/120, 176/175, 275/273 | | Commas: 99/98, 121/120, 176/175, 275/273 |
|
| |
|
| valid range: [270.968, 271.698] (31 to 53) | | valid range: [270.968, 271.698] (31 to 53) |
| | |
| nice range: [266.871, 275.659] | | nice range: [266.871, 275.659] |
| | |
| strict range: [270.968, 271.698] | | strict range: [270.968, 271.698] |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 271.546 | | [[POTE_tuning|POTE generator]]: ~7/6 = 271.546 |
|
| |
|
| Map: [<1 0 3 1 3 8|, <0 7 -3 8 2 -19|] | | Map: [<1 0 3 1 3 8|, <0 7 -3 8 2 -19|] |
| | |
| EDOs: 22, 31, 53, 84e, 137e | | EDOs: 22, 31, 53, 84e, 137e |
| | |
| Badness: 0.0197 | | Badness: 0.0197 |
|
| |
|
| [[Orwell#Music|Music in Orwell]] | | [[Orwell#Music|Music in Orwell]] |
|
| |
|
| ==Blair== | | ==Blair== |
| Commas: 65/64, 78/77, 91/90, 99/98 | | Commas: 65/64, 78/77, 91/90, 99/98 |
|
| |
|
| valid range: [] | | valid range: [] |
| | |
| nice range: [265.357, 289.210] | | nice range: [265.357, 289.210] |
| | |
| strict range: [] | | strict range: [] |
|
| |
|
Line 100: |
Line 120: |
|
| |
|
| Map: [<1 0 3 1 3 3|, <0 7 -3 8 2 3|] | | Map: [<1 0 3 1 3 3|, <0 7 -3 8 2 3|] |
| | |
| EDOs: 9, 22, 31f | | EDOs: 9, 22, 31f |
| | |
| Badness: 0.0231 | | Badness: 0.0231 |
|
| |
|
| ==Newspeak== | | ==Newspeak== |
| Commas: 225/224, 441/440, 1728/1715 | | Commas: 225/224, 441/440, 1728/1715 |
|
| |
|
| valid range: [270.968, 271.698] (31 to 53) | | valid range: [270.968, 271.698] (31 to 53) |
| | |
| nice range: [266.871, 272.514] | | nice range: [266.871, 272.514] |
| | |
| strict range: [270.968, 271.698] | | strict range: [270.968, 271.698] |
|
| |
|
Line 113: |
Line 137: |
|
| |
|
| Map: [<1 0 3 1 -4|, <0 7 -3 8 33|] | | Map: [<1 0 3 1 -4|, <0 7 -3 8 33|] |
| | |
| EDOs: 31, 84, 115, 376b, 491bd, 606bde | | EDOs: 31, 84, 115, 376b, 491bd, 606bde |
| | |
| Badness: 0.0314 | | Badness: 0.0314 |
|
| |
|
| ==Winston== | | ==Winston== |
| Commas: 66/65, 99/98, 105/104, 121/120 | | Commas: 66/65, 99/98, 105/104, 121/120 |
|
| |
|
| valid range: [270.968, 272.727] (31 to 22f) | | valid range: [270.968, 272.727] (31 to 22f) |
| | |
| nice range: [266.871, 281.691] | | nice range: [266.871, 281.691] |
| | |
| strict range: [270.968, 272.727] | | strict range: [270.968, 272.727] |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 271.088 | | [[POTE_tuning|POTE generator]]: ~7/6 = 271.088 |
|
| |
|
| Map: [<1 0 3 1 3 1|, <0 7 -3 8 2 12|] | | Map: [<1 0 3 1 3 1|, <0 7 -3 8 2 12|] |
| | |
| EDOs: 22f, 31 | | EDOs: 22f, 31 |
| | |
| Badness: 0.0199 | | Badness: 0.0199 |
|
| |
|
| =Doublethink= | | =Doublethink= |
| Commas: 99/98, 121/120, 169/168, 176/175 | | Commas: 99/98, 121/120, 169/168, 176/175 |
|
| |
|
| valid range: [135.484, 136.364] (62 to 44) | | valid range: [135.484, 136.364] (62 to 44) |
| | |
| nice range: [128.298, 138.573] | | nice range: [128.298, 138.573] |
| | |
| strict range: [135.484, 136.364] | | strict range: [135.484, 136.364] |
|
| |
|
Line 139: |
Line 171: |
|
| |
|
| Map: [<1 0 3 1 3 2|, <0 14 -6 16 4 15|] | | Map: [<1 0 3 1 3 2|, <0 14 -6 16 4 15|] |
| | |
| EDOs: 9, 35, 44, 53, 62, 115ef, 168ef | | EDOs: 9, 35, 44, 53, 62, 115ef, 168ef |
| | |
| Badness: 0.0271 | | Badness: 0.0271 |
|
| |
|
| =Borwell= | | =Borwell= |
| Commas: 225/224, 243/242, 1728/1715 | | Commas: 225/224, 243/242, 1728/1715 |
|
| |
|
Line 148: |
Line 182: |
|
| |
|
| Map: [<1 7 0 9 17|, <0 -14 6 -16 -35|] | | Map: [<1 7 0 9 17|, <0 -14 6 -16 -35|] |
| | |
| EDOs: 31, 106, 137, 442bd | | EDOs: 31, 106, 137, 442bd |
| | |
| Badness: 0.0384 | | Badness: 0.0384 |
|
| |
|
| =Triwell= | | =Triwell= |
| Commas: 1029/1024, 235298/234375 | | Commas: 1029/1024, 235298/234375 |
|
| |
|
Line 157: |
Line 193: |
|
| |
|
| Map: [<1 7 0 1|, <0 -21 9 7]] | | Map: [<1 7 0 1|, <0 -21 9 7]] |
| | |
| Wedgie: <<21 -9 -7 -63 -70 9|| | | Wedgie: <<21 -9 -7 -63 -70 9|| |
| | |
| EDOs: 31, 97, 128, 159, 190 | | EDOs: 31, 97, 128, 159, 190 |
| | |
| Badness: 0.0806 | | Badness: 0.0806 |
|
| |
|
| ==11-limit== | | ==11-limit== |
| Commas: 385/384, 441/440, 456533/455625 | | Commas: 385/384, 441/440, 456533/455625 |
|
| |
|
Line 167: |
Line 206: |
|
| |
|
| Map: [<1 7 0 1 13|, <0 -21 9 7 -37]] | | Map: [<1 7 0 1 13|, <0 -21 9 7 -37]] |
| | |
| EDOs: 31, 97, 128, 159, 190 | | EDOs: 31, 97, 128, 159, 190 |
| Badness: 0.0298</pre></div> | | |
| <h4>Original HTML content:</h4>
| | Badness: 0.0298 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Semicomma family</title></head><body><!-- ws:start:WikiTextTocRule:24:&lt;img id=&quot;wikitext@@toc@@normal&quot; class=&quot;WikiMedia WikiMediaToc&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/normal?w=225&amp;h=100&quot;/&gt; --><div id="toc"><h1 class="nopad">Table of Contents</h1><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><div style="margin-left: 1em;"><a href="#Orson">Orson</a></div>
| | [[Category:family]] |
| <!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --><div style="margin-left: 2em;"><a href="#Orson-Seven limit children">Seven limit children</a></div>
| | [[Category:listen]] |
| <!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><div style="margin-left: 1em;"><a href="#Orwell">Orwell</a></div>
| | [[Category:orwell]] |
| <!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><div style="margin-left: 2em;"><a href="#Orwell-11-limit">11-limit</a></div>
| | [[Category:semicomma]] |
| <!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><div style="margin-left: 2em;"><a href="#Orwell-13-limit">13-limit</a></div>
| | [[Category:theory]] |
| <!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><div style="margin-left: 2em;"><a href="#Orwell-Blair">Blair</a></div>
| | [[Category:todo:add_definition]] |
| <!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --><div style="margin-left: 2em;"><a href="#Orwell-Newspeak">Newspeak</a></div>
| | [[Category:todo:intro]] |
| <!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><div style="margin-left: 2em;"><a href="#Orwell-Winston">Winston</a></div>
| |
| <!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><div style="margin-left: 1em;"><a href="#Doublethink">Doublethink</a></div>
| |
| <!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --><div style="margin-left: 1em;"><a href="#Borwell">Borwell</a></div>
| |
| <!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><div style="margin-left: 1em;"><a href="#Triwell">Triwell</a></div>
| |
| <!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><div style="margin-left: 2em;"><a href="#Triwell-11-limit">11-limit</a></div>
| |
| <!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --></div>
| |
| <!-- ws:end:WikiTextTocRule:37 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Orson"></a><!-- ws:end:WikiTextHeadingRule:0 -->Orson</h1>
| |
| The 5-limit parent comma for the <strong>semicomma family</strong> is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor sixths. <strong>Orson</strong>, the <a class="wiki_link" href="/5-limit">5-limit</a> temperament tempering it out, has a <a class="wiki_link" href="/generator">generator</a> of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example <a class="wiki_link" href="/53edo">53edo</a> or <a class="wiki_link" href="/84edo">84edo</a>. These give tunings to the generator which are sharp of 7/6 by less than five <a class="wiki_link" href="/cent">cent</a>s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.<br />
| |
| <br />
| |
| Comma: 2109375/2097152<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Tuning%20Ranges%20of%20Regular%20Temperaments">valid range</a>: [257.143, 276.923] (14b to 13)<br />
| |
| nice range: [271.229, 271.708]<br />
| |
| strict range: [271.229, 271.708]<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~75/64 = 271.627<br />
| |
| <br />
| |
| Map: [&lt;1 0 3|, &lt;0 7 -3|]<br />
| |
| EDOs: 22, 31, 53, 190, 243, 296, 645c<br />
| |
| Badness: 0.0408<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Orson-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:2 -->Seven limit children</h2>
| |
| The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Orwell"></a><!-- ws:end:WikiTextHeadingRule:4 -->Orwell</h1>
| |
| Main article: <a class="wiki_link" href="/Orwell">Orwell</a><br />
| |
| So called because 19\84 (as a <a class="wiki_link" href="/fraction%20of%20the%20octave">fraction of the octave</a>) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53</a> and <a class="wiki_link" href="/84edo">84</a> equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the <a class="wiki_link" href="/7-limit">7-limit</a> and naturally extends into the <a class="wiki_link" href="/11-limit">11-limit</a>. <a class="wiki_link" href="/84edo">84edo</a>, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit <a class="wiki_link" href="/POTE%20tuning">POTE tuning</a>, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. <a class="wiki_link" href="/53edo">53edo</a> might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.<br />
| |
| <br />
| |
| The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.<br />
| |
| <br />
| |
| Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has <a class="wiki_link" href="/Retuning%2012edo%20to%20Orwell9">considerable harmonic resources</a> despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Comma">Commas</a>: 225/224, 1728/1715<br />
| |
| <br />
| |
| 7-limit<br />
| |
| [|1 0 0 0&gt;, |14/11 0 -7/11 7/11&gt;,<br />
| |
| |27/11 0 3/11 -3/11&gt;, |27/11 0 -8/11 8/11&gt;]<br />
| |
| <a class="wiki_link" href="/Fractional%20monzos">Eigenmonzos</a>: 2, 7/5<br />
| |
| <br />
| |
| 9-limit<br />
| |
| [|1 0 0 0&gt;, |21/17 14/17 -7/17 0&gt;,<br />
| |
| |42/17 -6/17 3/17 0&gt;, |41/17 16/17 -8/17 0&gt;]<br />
| |
| <a class="wiki_link" href="/Eigenmonzo">Eigenmonzos</a>: 2, 10/9<br />
| |
| <br />
| |
| valid range: [266.667, 272.727] (9 to 22)<br />
| |
| nice range: [266.871, 271.708]<br />
| |
| strict range: [266.871, 271.708]<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.509<br />
| |
| Algebraic generators: Sabra3, the real root of 12x^3-7x-48.<br />
| |
| <br />
| |
| Map: [&lt;1 0 3 1|, &lt;0 7 -3 8|]<br />
| |
| Wedgie: &lt;&lt;7 -3 8 -21 -7 27||<br />
| |
| EDOs: 22, 31, 53, 84, 137, 221d, 358d<br />
| |
| Badness: 0.0207<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Orwell-11-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->11-limit</h2>
| |
| <a class="wiki_link" href="/Comma">Commas</a>: 99/98, 121/120, 176/175<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Minimax%20tuning">Minimax tuning</a><br />
| |
| [|1 0 0 0 0&gt;, |14/11 0 -7/11 7/11 0&gt;, |27/11 0 3/11 -3/11 0&gt;,<br />
| |
| |27/11 0 -8/11 8/11 0&gt;, |37/11 0 -2/11 2/11 0&gt;]<br />
| |
| <a class="wiki_link" href="/Eigenmonzo">Eigenmonzos</a>: 2, 7/5<br />
| |
| <br />
| |
| valid range: [270.968, 272.727] (31 to 22)<br />
| |
| nice range: [266.871, 275.659]<br />
| |
| strict range: [270.968, 272.727]<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.426<br />
| |
| <br />
| |
| Map: [&lt;1 0 3 1 3|, &lt;0 7 -3 8 2|]<br />
| |
| <a class="wiki_link" href="/edo">Edos</a>: <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/84edo">84e</a><br />
| |
| Badness: 0.0152<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Orwell-13-limit"></a><!-- ws:end:WikiTextHeadingRule:8 -->13-limit</h2>
| |
| Commas: 99/98, 121/120, 176/175, 275/273<br />
| |
| <br />
| |
| valid range: [270.968, 271.698] (31 to 53)<br />
| |
| nice range: [266.871, 275.659]<br />
| |
| strict range: [270.968, 271.698]<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.546<br />
| |
| <br />
| |
| Map: [&lt;1 0 3 1 3 8|, &lt;0 7 -3 8 2 -19|]<br />
| |
| EDOs: 22, 31, 53, 84e, 137e<br />
| |
| Badness: 0.0197<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Orwell#Music">Music in Orwell</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Orwell-Blair"></a><!-- ws:end:WikiTextHeadingRule:10 -->Blair</h2>
| |
| Commas: 65/64, 78/77, 91/90, 99/98<br />
| |
| <br />
| |
| valid range: []<br />
| |
| nice range: [265.357, 289.210]<br />
| |
| strict range: []<br />
| |
| <br />
| |
| POTE generator: ~7/6 = 271.301<br />
| |
| <br />
| |
| Map: [&lt;1 0 3 1 3 3|, &lt;0 7 -3 8 2 3|]<br />
| |
| EDOs: 9, 22, 31f<br />
| |
| Badness: 0.0231<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Orwell-Newspeak"></a><!-- ws:end:WikiTextHeadingRule:12 -->Newspeak</h2>
| |
| Commas: 225/224, 441/440, 1728/1715<br />
| |
| <br />
| |
| valid range: [270.968, 271.698] (31 to 53)<br />
| |
| nice range: [266.871, 272.514]<br />
| |
| strict range: [270.968, 271.698]<br />
| |
| <br />
| |
| POTE tuning: ~7/6 = 271.288<br />
| |
| <br />
| |
| Map: [&lt;1 0 3 1 -4|, &lt;0 7 -3 8 33|]<br />
| |
| EDOs: 31, 84, 115, 376b, 491bd, 606bde<br />
| |
| Badness: 0.0314<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="Orwell-Winston"></a><!-- ws:end:WikiTextHeadingRule:14 -->Winston</h2>
| |
| Commas: 66/65, 99/98, 105/104, 121/120<br />
| |
| <br />
| |
| valid range: [270.968, 272.727] (31 to 22f)<br />
| |
| nice range: [266.871, 281.691]<br />
| |
| strict range: [270.968, 272.727]<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.088<br />
| |
| <br />
| |
| Map: [&lt;1 0 3 1 3 1|, &lt;0 7 -3 8 2 12|]<br />
| |
| EDOs: 22f, 31<br />
| |
| Badness: 0.0199<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Doublethink"></a><!-- ws:end:WikiTextHeadingRule:16 -->Doublethink</h1>
| |
| Commas: 99/98, 121/120, 169/168, 176/175<br />
| |
| <br />
| |
| valid range: [135.484, 136.364] (62 to 44)<br />
| |
| nice range: [128.298, 138.573]<br />
| |
| strict range: [135.484, 136.364]<br />
| |
| <br />
| |
| POTE tuning: ~13/12 = 135.723<br />
| |
| <br />
| |
| Map: [&lt;1 0 3 1 3 2|, &lt;0 14 -6 16 4 15|]<br />
| |
| EDOs: 9, 35, 44, 53, 62, 115ef, 168ef<br />
| |
| Badness: 0.0271<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="Borwell"></a><!-- ws:end:WikiTextHeadingRule:18 -->Borwell</h1>
| |
| Commas: 225/224, 243/242, 1728/1715<br />
| |
| <br />
| |
| POTE generator: ~55/36 = 735.752<br />
| |
| <br />
| |
| Map: [&lt;1 7 0 9 17|, &lt;0 -14 6 -16 -35|]<br />
| |
| EDOs: 31, 106, 137, 442bd<br />
| |
| Badness: 0.0384<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:20:&lt;h1&gt; --><h1 id="toc10"><a name="Triwell"></a><!-- ws:end:WikiTextHeadingRule:20 -->Triwell</h1>
| |
| Commas: 1029/1024, 235298/234375<br />
| |
| <br />
| |
| POTE generator: ~448/375 = 309.472<br />
| |
| <br />
| |
| Map: [&lt;1 7 0 1|, &lt;0 -21 9 7]]<br />
| |
| Wedgie: &lt;&lt;21 -9 -7 -63 -70 9||<br />
| |
| EDOs: 31, 97, 128, 159, 190<br />
| |
| Badness: 0.0806<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:22:&lt;h2&gt; --><h2 id="toc11"><a name="Triwell-11-limit"></a><!-- ws:end:WikiTextHeadingRule:22 -->11-limit</h2>
| |
| Commas: 385/384, 441/440, 456533/455625<br />
| |
| <br />
| |
| POTE generator: ~448/375 = 309.471<br />
| |
| <br />
| |
| Map: [&lt;1 7 0 1 13|, &lt;0 -21 9 7 -37]]<br />
| |
| EDOs: 31, 97, 128, 159, 190<br />
| |
| Badness: 0.0298</body></html></pre></div>
| |