Semicomma family: Difference between revisions

Wikispaces>hearneg
**Imported revision 526123066 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
__FORCETOC__
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
=Orson=
: This revision was by author [[User:hearneg|hearneg]] and made on <tt>2014-10-12 11:26:53 UTC</tt>.<br>
The 5-limit parent comma for the '''semicomma family''' is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor sixths. '''Orson''', the [[5-limit|5-limit]] temperament tempering it out, has a [[generator|generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo|53edo]] or [[84edo|84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent|cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.
: The original revision id was <tt>526123066</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
=Orson=  
The 5-limit parent comma for the **semicomma family** is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor sixths. **Orson**, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.


Comma: 2109375/2097152
Comma: 2109375/2097152


[[Tuning Ranges of Regular Temperaments|valid range]]: [257.143, 276.923] (14b to 13)
[[Tuning_Ranges_of_Regular_Temperaments|valid range]]: [257.143, 276.923] (14b to 13)
 
nice range: [271.229, 271.708]
nice range: [271.229, 271.708]
strict range: [271.229, 271.708]
strict range: [271.229, 271.708]


[[POTE tuning|POTE generator]]: ~75/64 = 271.627
[[POTE_tuning|POTE generator]]: ~75/64 = 271.627


Map: [&lt;1 0 3|, &lt;0 7 -3|]
Map: [&lt;1 0 3|, &lt;0 7 -3|]
EDOs: 22, 31, 53, 190, 243, 296, 645c
EDOs: 22, 31, 53, 190, 243, 296, 645c
Badness: 0.0408
Badness: 0.0408


==Seven limit children==  
==Seven limit children==
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.
The second comma of the [[Normal_lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.


=Orwell=  
=Orwell=
Main article: [[Orwell]]
Main article: [[Orwell|Orwell]]
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.
 
So called because 19\84 (as a [[fraction_of_the_octave|fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit|7-limit]] and naturally extends into the [[11-limit|11-limit]]. [[84edo|84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE_tuning|POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo|53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.


The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.


Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning 12edo to Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning_12edo_to_Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.


[[Comma|Commas]]: 225/224, 1728/1715
[[Comma|Commas]]: 225/224, 1728/1715


7-limit
7-limit
[|1 0 0 0&gt;, |14/11 0 -7/11 7/11&gt;,
[|1 0 0 0&gt;, |14/11 0 -7/11 7/11&gt;,
|27/11 0 3/11 -3/11&gt;, |27/11 0 -8/11 8/11&gt;]
|27/11 0 3/11 -3/11&gt;, |27/11 0 -8/11 8/11&gt;]
[[Fractional monzos|Eigenmonzos]]: 2, 7/5
 
[[Fractional_monzos|Eigenmonzos]]: 2, 7/5


9-limit
9-limit
[|1 0 0 0&gt;, |21/17 14/17 -7/17 0&gt;,
[|1 0 0 0&gt;, |21/17 14/17 -7/17 0&gt;,
|42/17 -6/17 3/17 0&gt;, |41/17 16/17 -8/17 0&gt;]
|42/17 -6/17 3/17 0&gt;, |41/17 16/17 -8/17 0&gt;]
[[Eigenmonzo|Eigenmonzos]]: 2, 10/9
[[Eigenmonzo|Eigenmonzos]]: 2, 10/9


valid range: [266.667, 272.727] (9 to 22)
valid range: [266.667, 272.727] (9 to 22)
nice range: [266.871, 271.708]
nice range: [266.871, 271.708]
strict range: [266.871, 271.708]
strict range: [266.871, 271.708]


[[POTE tuning|POTE generator]]: ~7/6 = 271.509
[[POTE_tuning|POTE generator]]: ~7/6 = 271.509
 
Algebraic generators: Sabra3, the real root of 12x^3-7x-48.
Algebraic generators: Sabra3, the real root of 12x^3-7x-48.


Map: [&lt;1 0 3 1|, &lt;0 7 -3 8|]
Map: [&lt;1 0 3 1|, &lt;0 7 -3 8|]
Wedgie: &lt;&lt;7 -3 8 -21 -7 27||
Wedgie: &lt;&lt;7 -3 8 -21 -7 27||
EDOs: 22, 31, 53, 84, 137, 221d, 358d
EDOs: 22, 31, 53, 84, 137, 221d, 358d
Badness: 0.0207
Badness: 0.0207


==11-limit==  
==11-limit==
[[Comma|Commas]]: 99/98, 121/120, 176/175
[[Comma|Commas]]: 99/98, 121/120, 176/175


[[Minimax tuning]]
[[Minimax_tuning|Minimax tuning]]
 
[|1 0 0 0 0&gt;, |14/11 0 -7/11 7/11 0&gt;, |27/11 0 3/11 -3/11 0&gt;,
[|1 0 0 0 0&gt;, |14/11 0 -7/11 7/11 0&gt;, |27/11 0 3/11 -3/11 0&gt;,
|27/11 0 -8/11 8/11 0&gt;, |37/11 0 -2/11 2/11 0&gt;]
|27/11 0 -8/11 8/11 0&gt;, |37/11 0 -2/11 2/11 0&gt;]
[[Eigenmonzo|Eigenmonzos]]: 2, 7/5
[[Eigenmonzo|Eigenmonzos]]: 2, 7/5


valid range: [270.968, 272.727] (31 to 22)
valid range: [270.968, 272.727] (31 to 22)
nice range: [266.871, 275.659]
nice range: [266.871, 275.659]
strict range: [270.968, 272.727]
strict range: [270.968, 272.727]


[[POTE tuning|POTE generator]]: ~7/6 = 271.426
[[POTE_tuning|POTE generator]]: ~7/6 = 271.426


Map: [&lt;1 0 3 1 3|, &lt;0 7 -3 8 2|]
Map: [&lt;1 0 3 1 3|, &lt;0 7 -3 8 2|]
[[edo|Edos]]: [[22edo|22]], [[31edo|31]], [[53edo|53]], [[84edo|84e]]
 
[[EDO|Edos]]: [[22edo|22]], [[31edo|31]], [[53edo|53]], [[84edo|84e]]
 
Badness: 0.0152
Badness: 0.0152


==13-limit==  
==13-limit==
Commas: 99/98, 121/120, 176/175, 275/273
Commas: 99/98, 121/120, 176/175, 275/273


valid range: [270.968, 271.698] (31 to 53)
valid range: [270.968, 271.698] (31 to 53)
nice range: [266.871, 275.659]
nice range: [266.871, 275.659]
strict range: [270.968, 271.698]
strict range: [270.968, 271.698]


[[POTE tuning|POTE generator]]: ~7/6 = 271.546
[[POTE_tuning|POTE generator]]: ~7/6 = 271.546


Map: [&lt;1 0 3 1 3 8|, &lt;0 7 -3 8 2 -19|]
Map: [&lt;1 0 3 1 3 8|, &lt;0 7 -3 8 2 -19|]
EDOs: 22, 31, 53, 84e, 137e
EDOs: 22, 31, 53, 84e, 137e
Badness: 0.0197
Badness: 0.0197


[[Orwell#Music|Music in Orwell]]
[[Orwell#Music|Music in Orwell]]


==Blair==  
==Blair==
Commas: 65/64, 78/77, 91/90, 99/98
Commas: 65/64, 78/77, 91/90, 99/98


valid range: []
valid range: []
nice range: [265.357, 289.210]
nice range: [265.357, 289.210]
strict range: []
strict range: []


Line 100: Line 120:


Map: [&lt;1 0 3 1 3 3|, &lt;0 7 -3 8 2 3|]
Map: [&lt;1 0 3 1 3 3|, &lt;0 7 -3 8 2 3|]
EDOs: 9, 22, 31f
EDOs: 9, 22, 31f
Badness: 0.0231
Badness: 0.0231


==Newspeak==  
==Newspeak==
Commas: 225/224, 441/440, 1728/1715
Commas: 225/224, 441/440, 1728/1715


valid range: [270.968, 271.698] (31 to 53)
valid range: [270.968, 271.698] (31 to 53)
nice range: [266.871, 272.514]
nice range: [266.871, 272.514]
strict range: [270.968, 271.698]
strict range: [270.968, 271.698]


Line 113: Line 137:


Map: [&lt;1 0 3 1 -4|, &lt;0 7 -3 8 33|]
Map: [&lt;1 0 3 1 -4|, &lt;0 7 -3 8 33|]
EDOs: 31, 84, 115, 376b, 491bd, 606bde
EDOs: 31, 84, 115, 376b, 491bd, 606bde
Badness: 0.0314
Badness: 0.0314


==Winston==  
==Winston==
Commas: 66/65, 99/98, 105/104, 121/120
Commas: 66/65, 99/98, 105/104, 121/120


valid range: [270.968, 272.727] (31 to 22f)
valid range: [270.968, 272.727] (31 to 22f)
nice range: [266.871, 281.691]
nice range: [266.871, 281.691]
strict range: [270.968, 272.727]
strict range: [270.968, 272.727]


[[POTE tuning|POTE generator]]: ~7/6 = 271.088
[[POTE_tuning|POTE generator]]: ~7/6 = 271.088


Map: [&lt;1 0 3 1 3 1|, &lt;0 7 -3 8 2 12|]
Map: [&lt;1 0 3 1 3 1|, &lt;0 7 -3 8 2 12|]
EDOs: 22f, 31
EDOs: 22f, 31
Badness: 0.0199
Badness: 0.0199


=Doublethink=  
=Doublethink=
Commas: 99/98, 121/120, 169/168, 176/175
Commas: 99/98, 121/120, 169/168, 176/175


valid range: [135.484, 136.364] (62 to 44)
valid range: [135.484, 136.364] (62 to 44)
nice range: [128.298, 138.573]
nice range: [128.298, 138.573]
strict range: [135.484, 136.364]
strict range: [135.484, 136.364]


Line 139: Line 171:


Map: [&lt;1 0 3 1 3 2|, &lt;0 14 -6 16 4 15|]
Map: [&lt;1 0 3 1 3 2|, &lt;0 14 -6 16 4 15|]
EDOs: 9, 35, 44, 53, 62, 115ef, 168ef
EDOs: 9, 35, 44, 53, 62, 115ef, 168ef
Badness: 0.0271
Badness: 0.0271


=Borwell=  
=Borwell=
Commas: 225/224, 243/242, 1728/1715
Commas: 225/224, 243/242, 1728/1715


Line 148: Line 182:


Map: [&lt;1 7 0 9 17|, &lt;0 -14 6 -16 -35|]
Map: [&lt;1 7 0 9 17|, &lt;0 -14 6 -16 -35|]
EDOs: 31, 106, 137, 442bd
EDOs: 31, 106, 137, 442bd
Badness: 0.0384
Badness: 0.0384


=Triwell=  
=Triwell=
Commas: 1029/1024, 235298/234375
Commas: 1029/1024, 235298/234375


Line 157: Line 193:


Map: [&lt;1 7 0 1|, &lt;0 -21 9 7]]
Map: [&lt;1 7 0 1|, &lt;0 -21 9 7]]
Wedgie: &lt;&lt;21 -9 -7 -63 -70 9||
Wedgie: &lt;&lt;21 -9 -7 -63 -70 9||
EDOs: 31, 97, 128, 159, 190
EDOs: 31, 97, 128, 159, 190
Badness: 0.0806
Badness: 0.0806


==11-limit==  
==11-limit==
Commas: 385/384, 441/440, 456533/455625
Commas: 385/384, 441/440, 456533/455625


Line 167: Line 206:


Map: [&lt;1 7 0 1 13|, &lt;0 -21 9 7 -37]]
Map: [&lt;1 7 0 1 13|, &lt;0 -21 9 7 -37]]
EDOs: 31, 97, 128, 159, 190
EDOs: 31, 97, 128, 159, 190
Badness: 0.0298</pre></div>
 
<h4>Original HTML content:</h4>
Badness: 0.0298
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Semicomma family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:24:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Orson"&gt;Orson&lt;/a&gt;&lt;/div&gt;
[[Category:family]]
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orson-Seven limit children"&gt;Seven limit children&lt;/a&gt;&lt;/div&gt;
[[Category:listen]]
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Orwell"&gt;Orwell&lt;/a&gt;&lt;/div&gt;
[[Category:orwell]]
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
[[Category:semicomma]]
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
[[Category:theory]]
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Blair"&gt;Blair&lt;/a&gt;&lt;/div&gt;
[[Category:todo:add_definition]]
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Newspeak"&gt;Newspeak&lt;/a&gt;&lt;/div&gt;
[[Category:todo:intro]]
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Winston"&gt;Winston&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Doublethink"&gt;Doublethink&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Borwell"&gt;Borwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Triwell"&gt;Triwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Triwell-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Orson"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Orson&lt;/h1&gt;
The 5-limit parent comma for the &lt;strong&gt;semicomma family&lt;/strong&gt; is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor sixths. &lt;strong&gt;Orson&lt;/strong&gt;, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; or &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
&lt;br /&gt;
Comma: 2109375/2097152&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Tuning%20Ranges%20of%20Regular%20Temperaments"&gt;valid range&lt;/a&gt;: [257.143, 276.923] (14b to 13)&lt;br /&gt;
nice range: [271.229, 271.708]&lt;br /&gt;
strict range: [271.229, 271.708]&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~75/64 = 271.627&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3|, &amp;lt;0 7 -3|]&lt;br /&gt;
EDOs: 22, 31, 53, 190, 243, 296, 645c&lt;br /&gt;
Badness: 0.0408&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Orson-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Seven limit children&lt;/h2&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;amp;159 temperament with wedgie &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;7 -3 61 -21 77 150||.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Orwell&lt;/h1&gt;
Main article: &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;&lt;br /&gt;
So called because 19\84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84&lt;/a&gt; equal, and may be described as the 22&amp;amp;31 temperament, or &amp;lt;&amp;lt;7 -3 8 -21 -7 27||. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE tuning&lt;/a&gt;, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
&lt;br /&gt;
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.&lt;br /&gt;
&lt;br /&gt;
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has &lt;a class="wiki_link" href="/Retuning%2012edo%20to%20Orwell9"&gt;considerable harmonic resources&lt;/a&gt; despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 225/224, 1728/1715&lt;br /&gt;
&lt;br /&gt;
7-limit&lt;br /&gt;
[|1 0 0 0&amp;gt;, |14/11 0 -7/11 7/11&amp;gt;,&lt;br /&gt;
|27/11 0 3/11 -3/11&amp;gt;, |27/11 0 -8/11 8/11&amp;gt;]&lt;br /&gt;
&lt;a class="wiki_link" href="/Fractional%20monzos"&gt;Eigenmonzos&lt;/a&gt;: 2, 7/5&lt;br /&gt;
&lt;br /&gt;
9-limit&lt;br /&gt;
[|1 0 0 0&amp;gt;, |21/17 14/17 -7/17 0&amp;gt;,&lt;br /&gt;
|42/17 -6/17 3/17 0&amp;gt;, |41/17 16/17 -8/17 0&amp;gt;]&lt;br /&gt;
&lt;a class="wiki_link" href="/Eigenmonzo"&gt;Eigenmonzos&lt;/a&gt;: 2, 10/9&lt;br /&gt;
&lt;br /&gt;
valid range: [266.667, 272.727] (9 to 22)&lt;br /&gt;
nice range: [266.871, 271.708]&lt;br /&gt;
strict range: [266.871, 271.708]&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.509&lt;br /&gt;
Algebraic generators: Sabra3, the real root of 12x^3-7x-48.&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1|, &amp;lt;0 7 -3 8|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;7 -3 8 -21 -7 27||&lt;br /&gt;
EDOs: 22, 31, 53, 84, 137, 221d, 358d&lt;br /&gt;
Badness: 0.0207&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Orwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h2&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 99/98, 121/120, 176/175&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Minimax%20tuning"&gt;Minimax tuning&lt;/a&gt;&lt;br /&gt;
[|1 0 0 0 0&amp;gt;, |14/11 0 -7/11 7/11 0&amp;gt;, |27/11 0 3/11 -3/11 0&amp;gt;,&lt;br /&gt;
|27/11 0 -8/11 8/11 0&amp;gt;, |37/11 0 -2/11 2/11 0&amp;gt;]&lt;br /&gt;
&lt;a class="wiki_link" href="/Eigenmonzo"&gt;Eigenmonzos&lt;/a&gt;: 2, 7/5&lt;br /&gt;
&lt;br /&gt;
valid range: [270.968, 272.727] (31 to 22)&lt;br /&gt;
nice range: [266.871, 275.659]&lt;br /&gt;
strict range: [270.968, 272.727]&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.426&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 3|, &amp;lt;0 7 -3 8 2|]&lt;br /&gt;
&lt;a class="wiki_link" href="/edo"&gt;Edos&lt;/a&gt;: &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53&lt;/a&gt;, &lt;a class="wiki_link" href="/84edo"&gt;84e&lt;/a&gt;&lt;br /&gt;
Badness: 0.0152&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Orwell-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
Commas: 99/98, 121/120, 176/175, 275/273&lt;br /&gt;
&lt;br /&gt;
valid range: [270.968, 271.698] (31 to 53)&lt;br /&gt;
nice range: [266.871, 275.659]&lt;br /&gt;
strict range: [270.968, 271.698]&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.546&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 3 8|, &amp;lt;0 7 -3 8 2 -19|]&lt;br /&gt;
EDOs: 22, 31, 53, 84e, 137e&lt;br /&gt;
Badness: 0.0197&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Orwell#Music"&gt;Music in Orwell&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Orwell-Blair"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Blair&lt;/h2&gt;
Commas: 65/64, 78/77, 91/90, 99/98&lt;br /&gt;
&lt;br /&gt;
valid range: []&lt;br /&gt;
nice range: [265.357, 289.210]&lt;br /&gt;
strict range: []&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~7/6 = 271.301&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 3 3|, &amp;lt;0 7 -3 8 2 3|]&lt;br /&gt;
EDOs: 9, 22, 31f&lt;br /&gt;
Badness: 0.0231&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Orwell-Newspeak"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Newspeak&lt;/h2&gt;
Commas: 225/224, 441/440, 1728/1715&lt;br /&gt;
&lt;br /&gt;
valid range: [270.968, 271.698] (31 to 53)&lt;br /&gt;
nice range: [266.871, 272.514]&lt;br /&gt;
strict range: [270.968, 271.698]&lt;br /&gt;
&lt;br /&gt;
POTE tuning: ~7/6 = 271.288&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 -4|, &amp;lt;0 7 -3 8 33|]&lt;br /&gt;
EDOs: 31, 84, 115, 376b, 491bd, 606bde&lt;br /&gt;
Badness: 0.0314&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Orwell-Winston"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Winston&lt;/h2&gt;
Commas: 66/65, 99/98, 105/104, 121/120&lt;br /&gt;
&lt;br /&gt;
valid range: [270.968, 272.727] (31 to 22f)&lt;br /&gt;
nice range: [266.871, 281.691]&lt;br /&gt;
strict range: [270.968, 272.727]&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.088&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 3 1|, &amp;lt;0 7 -3 8 2 12|]&lt;br /&gt;
EDOs: 22f, 31&lt;br /&gt;
Badness: 0.0199&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Doublethink"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Doublethink&lt;/h1&gt;
Commas: 99/98, 121/120, 169/168, 176/175&lt;br /&gt;
&lt;br /&gt;
valid range: [135.484, 136.364] (62 to 44)&lt;br /&gt;
nice range: [128.298, 138.573]&lt;br /&gt;
strict range: [135.484, 136.364]&lt;br /&gt;
&lt;br /&gt;
POTE tuning: ~13/12 = 135.723&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 3 2|, &amp;lt;0 14 -6 16 4 15|]&lt;br /&gt;
EDOs: 9, 35, 44, 53, 62, 115ef, 168ef&lt;br /&gt;
Badness: 0.0271&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc9"&gt;&lt;a name="Borwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Borwell&lt;/h1&gt;
Commas: 225/224, 243/242, 1728/1715&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~55/36 = 735.752&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 7 0 9 17|, &amp;lt;0 -14 6 -16 -35|]&lt;br /&gt;
EDOs: 31, 106, 137, 442bd&lt;br /&gt;
Badness: 0.0384&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="Triwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Triwell&lt;/h1&gt;
Commas: 1029/1024, 235298/234375&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~448/375 = 309.472&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 7 0 1|, &amp;lt;0 -21 9 7]]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||&lt;br /&gt;
EDOs: 31, 97, 128, 159, 190&lt;br /&gt;
Badness: 0.0806&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Triwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;11-limit&lt;/h2&gt;
Commas: 385/384, 441/440, 456533/455625&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~448/375 = 309.471&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 7 0 1 13|, &amp;lt;0 -21 9 7 -37]]&lt;br /&gt;
EDOs: 31, 97, 128, 159, 190&lt;br /&gt;
Badness: 0.0298&lt;/body&gt;&lt;/html&gt;</pre></div>