Pergen names: Difference between revisions
Wikispaces>TallKite **Imported revision 621987807 - Original comment: ** |
Wikispaces>TallKite **Imported revision 621990303 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-11-19 | : This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-11-19 23:55:58 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>621990303</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 58: | Line 58: | ||
To find a temperament's pergen set, first find the **PGM**, the period generator mapping. This is a matrix with a column for each prime in the subgroup, and a row for each period/generator. Choose your generators so that all entries below the diagonal are zero. Graham Breed's website has a temperament finder [[@http://x31eq.com/temper/uv.html|x31eq.com/temper/uv.html]] that will find such a matrix. Next make a square matrix by discarding columns, usually the columns for the highest primes. But lower primes may need to be discarded, as in the previous example, to ensure that the diagonal has no zeros. Lower primes > 3 may also be discarded to minimize splitting, see the Breedsmic example below. Then invert the matrix to get the monzos for each period/generator. Add/subtract periods from the 1st generator to get alternate generators. If the interval becomes descending, invert it. For rank-3, add/subtract both periods and generators from the 2nd generator to get more alternates. Choose the alternates to minimize the splitting and the cents. | To find a temperament's pergen set, first find the **PGM**, the period generator mapping. This is a matrix with a column for each prime in the subgroup, and a row for each period/generator. Choose your generators so that all entries below the diagonal are zero. Graham Breed's website has a temperament finder [[@http://x31eq.com/temper/uv.html|x31eq.com/temper/uv.html]] that will find such a matrix. Next make a square matrix by discarding columns, usually the columns for the highest primes. But lower primes may need to be discarded, as in the previous example, to ensure that the diagonal has no zeros. Lower primes > 3 may also be discarded to minimize splitting, see the Breedsmic example below. Then invert the matrix to get the monzos for each period/generator. Add/subtract periods from the 1st generator to get alternate generators. If the interval becomes descending, invert it. For rank-3, add/subtract both periods and generators from the 2nd generator to get more alternates. Choose the alternates to minimize the splitting and the cents. | ||
For rank-2, we can compute the pergen set right from the PGM [(x y), (0, z)]. For a period P and a generator G: | For rank-2, we can compute the pergen set right from the PGM = [(x y), (0, z)]. For a period P and a generator G: | ||
P8 = xP and WP5 = yP + zG | P8 = xP and WP5 = yP + zG | ||
P = P8/x | P = P8/x | ||
G = [WP5 - y(P8/x)] / z = [-yP8 + xWP5]/xz = (-y, x) / xz | G = [WP5 - y(P8/x)] / z = [-yP8 + xWP5]/xz = (-y, x) / xz | ||
To | To get alternate generators, add n periods to G. n ranges from -x (subtracting a full octave) to +x (adding a full octave). | ||
G = (-y, x) / xz + nP8/x = (nz - y, x) / xz | G = (-y, x) / xz + nP = (-y, x) / xz + nP8/x = (nz - y, x) / xz | ||
Rank-3 example: Breedsmic is 2.3.5.7 with 2401/2400 = (-5,-1,-2,4) tempered out. [[http://x31eq.com/cgi-bin/rt.cgi?ets=130_171_270&limit=7|x31.com]] gives us this matrix: | Rank-3 example: Breedsmic is 2.3.5.7 with 2401/2400 = (-5,-1,-2,4) tempered out. [[http://x31eq.com/cgi-bin/rt.cgi?ets=130_171_270&limit=7|x31.com]] gives us this matrix: | ||
Line 110: | Line 108: | ||
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one. | The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one. | ||
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks. | |||
(table is under construction) | (table is under construction) | ||
Line 118: | Line 118: | ||
temperament ||~ compatible edos | temperament ||~ compatible edos | ||
(12-31 only) || | (12-31 only) || | ||
||= {P8, P5} ||= 600-720¢ ||= none ||= none ||= C - G ||= meantone ||= 12, 16, 19, 23, 26 || | ||= {P8, P5} ||= 600-720¢ ||= none ||= none ||= C - G ||= meantone ||= 12, 13b, 14*, 15*, 16, | ||
||= {P8/2, P5} ||= 700-720¢ ||= P8/2 = vA4 = ^d5 ||= ^^d2 ||= C - F#v=Gb^ - C ||= srutal ||= 12, 20, 22, 24, 30 || | 17, 18b*, 19, 20*, 21*, | ||
||= " ||= 600-700¢ ||= P8/2 = ^A4 = vd5 ||= vvd2 ||= C - F#^=Gbv - C ||= ||= 12, 14, 16, 18b, 26 || | 22, 23, 24*, 25*, 26, | ||
27, 28*, 29, 30*, 31 || | |||
||~ ||~ ||~ ||~ ||~ ||~ ||~ || | |||
||= {P8/2, P5} ||= 700-720¢ ||= P8/2 = vA4 = ^d5 ||= ^^d2 ||= C - F#v=Gb^ - C ||= srutal ||= 12, 20*, 22, 24*, 30* || | |||
||= " ||= 600-700¢ ||= P8/2 = ^A4 = vd5 ||= vvd2 ||= C - F#^=Gbv - C ||= ||= 12, 14, 16, 18b, | |||
24*, 26, 28* || | |||
||= " ||= 600-720¢ ||= P8/2 = ^P4 = vP5 ||= vvM2 ||= C - F^=Gv - C ||= (is this needed?) ||= || | ||= " ||= 600-720¢ ||= P8/2 = ^P4 = vP5 ||= vvM2 ||= C - F^=Gv - C ||= (is this needed?) ||= || | ||
||= {P8, P5/2} ||= 4\7 - 720¢ ||= P5/2 = ^m3 = vM3 ||= vvA1 ||= C - Eb^=Ev - G ||= mohajira ||= 14, 17, 20, 21, 24 | ||= {P8, P5/2} ||= 4\7 - 720¢ ||= P5/2 = ^m3 = vM3 ||= vvA1 ||= C - Eb^=Ev - G ||= mohajira ||= 14*, 17, 20*, 21*, 24 | ||
27, 28, 30, 31 || | 27, 28*, 30*, 31 || | ||
||= " ||= 600¢ - 4\7 ||= P5/2 = ^M3 = vm3 ||= vvd1 ||= ||= ||= 14, 18b, 21, 28 || | ||= " ||= 600¢ - 4\7 ||= P5/2 = ^M3 = vm3 ||= vvd1 ||= ||= ||= 14*, 18b, 21*, 28* || | ||
||= {P8, P4/2} ||= ||= P4/2 = ^M2 = vm3 ||= vvm2 ||= D - E^=Fv - G ||= semaphore ||= | ||= {P8, P4/2} ||= ||= P4/2 = ^M2 = vm3 ||= vvm2 ||= D - E^=Fv - G ||= semaphore ||= || | ||
||= " ||= ||= P4/2 = vA2 = ^d3 ||= ^^dd2 ||= ||= ||= || | ||= " ||= ||= P4/2 = vA2 = ^d3 ||= ^^dd2 ||= ||= ||= || | ||
||= " ||= ||= P4/2 = ^A2 = vd3 ||= vvdd2 ||= ||= ||= || | ||= " ||= ||= P4/2 = ^A2 = vd3 ||= vvdd2 ||= ||= ||= || | ||
||= ||= ||= ||= ||= ||= ||= || | ||= ||= ||= ||= ||= ||= ||= || | ||
|| || || || || || || || | || || || || || || || || | ||
Line 136: | Line 138: | ||
P4/2 = /M2 = \m3 ||= ^^d2, | P4/2 = /M2 = \m3 ||= ^^d2, | ||
\\m2 ||= C - F#v=Gb^ - C, | \\m2 ||= C - F#v=Gb^ - C, | ||
C - D/=Eb\ - F ||= bb&aaT ||= | C - D/=Eb\ - F ||= bb&aaT ||= || | ||
||= {P8/ | ||~ ||~ ||~ ||~ ||~ ||~ ||~ || | ||
||= | ||= {P8/3, P5} ||= ||= ||= ||= ||= ||= || | ||
||= {P8 | ||= {P8, P4/3} ||= ||= ||= ||= ||= ||= || | ||
||= | ||= {P8, P5/3} ||= ||= ||= ||= ||= ||= || | ||
||= | ||= {P8, P11/3} ||= ||= ||= ||= ||= ||= || | ||
||= | ||= {P8/3, P4/2} ||= ||= ||= ||= ||= ||= || | ||
||= | ||= {P8/3, P5/2} ||= ||= ||= ||= ||= ||= || | ||
||= | ||= {P8/2, P4/3} ||= ||= ||= ||= ||= ||= || | ||
||= | ||= {P8/2, P5/3} ||= ||= ||= ||= ||= ||= || | ||
||= | ||= {P8/2, P11/3} ||= ||= ||= ||= ||= ||= || | ||
|| | ||= {P8/3, P4/3} ||= ||= ||= ||= ||= ||= || | ||
||= | ||~ ||~ ||~ ||~ ||~ ||~ ||~ || | ||
||= | ||= {P8/4, P5} ||= ||= ||= ||= ||= ||= || | ||
||= etc. ||= ||= ||= ||= ||= ||= || | |||
||= ||= ||= ||= ||= ||= ||= || | ||= ||= ||= ||= ||= ||= ||= || | ||
||= ||= ||= ||= ||= ||= ||= || | ||= ||= ||= ||= ||= ||= ||= || | ||
Line 399: | Line 402: | ||
To find a temperament's pergen set, first find the <strong>PGM</strong>, the period generator mapping. This is a matrix with a column for each prime in the subgroup, and a row for each period/generator. Choose your generators so that all entries below the diagonal are zero. Graham Breed's website has a temperament finder <a class="wiki_link_ext" href="http://x31eq.com/temper/uv.html" rel="nofollow" target="_blank">x31eq.com/temper/uv.html</a> that will find such a matrix. Next make a square matrix by discarding columns, usually the columns for the highest primes. But lower primes may need to be discarded, as in the previous example, to ensure that the diagonal has no zeros. Lower primes &gt; 3 may also be discarded to minimize splitting, see the Breedsmic example below. Then invert the matrix to get the monzos for each period/generator. Add/subtract periods from the 1st generator to get alternate generators. If the interval becomes descending, invert it. For rank-3, add/subtract both periods and generators from the 2nd generator to get more alternates. Choose the alternates to minimize the splitting and the cents.<br /> | To find a temperament's pergen set, first find the <strong>PGM</strong>, the period generator mapping. This is a matrix with a column for each prime in the subgroup, and a row for each period/generator. Choose your generators so that all entries below the diagonal are zero. Graham Breed's website has a temperament finder <a class="wiki_link_ext" href="http://x31eq.com/temper/uv.html" rel="nofollow" target="_blank">x31eq.com/temper/uv.html</a> that will find such a matrix. Next make a square matrix by discarding columns, usually the columns for the highest primes. But lower primes may need to be discarded, as in the previous example, to ensure that the diagonal has no zeros. Lower primes &gt; 3 may also be discarded to minimize splitting, see the Breedsmic example below. Then invert the matrix to get the monzos for each period/generator. Add/subtract periods from the 1st generator to get alternate generators. If the interval becomes descending, invert it. For rank-3, add/subtract both periods and generators from the 2nd generator to get more alternates. Choose the alternates to minimize the splitting and the cents.<br /> | ||
<br /> | <br /> | ||
For rank-2, we can compute the pergen set right from the PGM [(x y), (0, z)]. For a period P and a generator G: | For rank-2, we can compute the pergen set right from the PGM = [(x y), (0, z)]. For a period P and a generator G:<br /> | ||
<br /> | |||
P8 = xP and WP5 = yP + zG<br /> | P8 = xP and WP5 = yP + zG<br /> | ||
P = P8/x<br /> | P = P8/x<br /> | ||
G = [WP5 - y(P8/x)] / z = [-yP8 + xWP5]/xz = (-y, x) / xz<br /> | G = [WP5 - y(P8/x)] / z = [-yP8 + xWP5]/xz = (-y, x) / xz<br /> | ||
<br /> | <br /> | ||
To | To get alternate generators, add n periods to G. n ranges from -x (subtracting a full octave) to +x (adding a full octave).<br /> | ||
G = (-y, x) / xz + | G = (-y, x) / xz + nP = (-y, x) / xz + nP8/x = (nz - y, x) / xz<br /> | ||
<br /> | <br /> | ||
Rank-3 example: Breedsmic is 2.3.5.7 with 2401/2400 = (-5,-1,-2,4) tempered out. <a class="wiki_link_ext" href="http://x31eq.com/cgi-bin/rt.cgi?ets=130_171_270&amp;limit=7" rel="nofollow">x31.com</a> gives us this matrix:<br /> | Rank-3 example: Breedsmic is 2.3.5.7 with 2401/2400 = (-5,-1,-2,4) tempered out. <a class="wiki_link_ext" href="http://x31eq.com/cgi-bin/rt.cgi?ets=130_171_270&amp;limit=7" rel="nofollow">x31.com</a> gives us this matrix:<br /> | ||
Line 680: | Line 681: | ||
<br /> | <br /> | ||
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.<br /> | The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.<br /> | ||
<br /> | |||
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks.<br /> | |||
<br /> | <br /> | ||
(table is under construction)<br /> | (table is under construction)<br /> | ||
Line 719: | Line 722: | ||
<td style="text-align: center;">meantone<br /> | <td style="text-align: center;">meantone<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">12, 16, 19, 23, 26<br /> | <td style="text-align: center;">12, 13b, 14*, 15*, 16,<br /> | ||
17, 18b*, 19, 20*, 21*,<br /> | |||
22, 23, 24*, 25*, 26,<br /> | |||
27, 28*, 29, 30*, 31<br /> | |||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 735: | Line 757: | ||
<td style="text-align: center;">srutal<br /> | <td style="text-align: center;">srutal<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">12, 20, 22, 24, 30<br /> | <td style="text-align: center;">12, 20*, 22, 24*, 30*<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 751: | Line 773: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;">12, 14, 16, 18b, 26<br /> | <td style="text-align: center;">12, 14, 16, 18b,<br /> | ||
24*, 26, 28*<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 783: | Line 806: | ||
<td style="text-align: center;">mohajira<br /> | <td style="text-align: center;">mohajira<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">14, 17, 20, 21, 24 <br /> | <td style="text-align: center;">14*, 17, 20*, 21*, 24 <br /> | ||
27, 28, 30, 31<br /> | 27, 28*, 30*, 31<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 800: | Line 823: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;">14, 18b, 21, 28<br /> | <td style="text-align: center;">14*, 18b, 21*, 28*<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 816: | Line 839: | ||
<td style="text-align: center;">semaphore<br /> | <td style="text-align: center;">semaphore<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 847: | Line 870: | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 947: | Line 922: | ||
<td style="text-align: center;">bb&amp;aaT<br /> | <td style="text-align: center;">bb&amp;aaT<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;">{P8/ | <th><br /> | ||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">{P8/3, P5}<br /> | |||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 967: | Line 958: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8, P4/3}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 983: | Line 974: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;">{P8 | <td style="text-align: center;">{P8, P5/3}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 999: | Line 990: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8, P11/3}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,015: | Line 1,006: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8/3, P4/2}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,031: | Line 1,022: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8/3, P5/2}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,047: | Line 1,038: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8/2, P4/3}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,063: | Line 1,054: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8/2, P5/3}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,079: | Line 1,070: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8/2, P11/3}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,095: | Line 1,086: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8/3, P4/3}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,111: | Line 1,102: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</ | </th> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">{P8/4, P5}<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 1,143: | Line 1,134: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">etc.<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> |