Pergen names: Difference between revisions

Wikispaces>TallKite
**Imported revision 621993889 - Original comment: **
Wikispaces>TallKite
**Imported revision 621994241 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-11-20 02:27:46 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-11-20 02:42:36 UTC</tt>.<br>
: The original revision id was <tt>621993889</tt>.<br>
: The original revision id was <tt>621994241</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 111: Line 111:
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.


An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks.
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks. 13b is incompatible with {P8, P5/2}, but 13 isn't. However, 13 is incompatible with heptatonic notation.


(table is under construction)
(table is under construction)
Line 150: Line 150:
25*, 26, 30*, 31 ||
25*, 26, 30*, 31 ||
||= {P8, P11/3} ||=  ||=  ||=  ||=  ||=  ||= same as {P8, P4/3} ||
||= {P8, P11/3} ||=  ||=  ||=  ||=  ||=  ||= same as {P8, P4/3} ||
||= {P8/3, P4/2} ||=  ||=  ||=  ||=  ||=  ||= 15, 18b*, 24, 30* ||
||= {P8/3, P4/2} ||=  ||=  ||=  ||=  ||=  ||= 15, 18b*, 24, 30 ||
||= {P8/3, P5/2} ||=  ||=  ||=  ||=  ||=  ||= 18b, 24, 30 ||
||= {P8/3, P5/2} ||=  ||=  ||=  ||=  ||=  ||= 18b, 24, 30 ||
||= {P8/2, P4/3} ||=  ||=  ||=  ||=  ||=  ||= 14, 22, 28*, 30* ||
||= {P8/2, P4/3} ||=  ||=  ||=  ||=  ||=  ||= 14, 22, 28*, 30* ||
Line 157: Line 157:
||= {P8/3, P4/3} ||=  ||=  ||=  ||=  ||=  ||= 15, 21, 30* ||
||= {P8/3, P4/3} ||=  ||=  ||=  ||=  ||=  ||= 15, 21, 30* ||
||~ quarters ||~  ||~  ||~  ||~  ||~  ||~  ||
||~ quarters ||~  ||~  ||~  ||~  ||~  ||~  ||
||= {P8/4, P5} ||=  ||=  ||=  ||=  ||=  ||=   ||
||= {P8/4, P5} ||=  ||=  ||=  ||=  ||=  ||= 12, 16, 20, 24*, 28 ||
||= {P8, P4/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8, P4/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8, P5/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8, P5/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
Line 166: Line 166:
||= {P8/2, P5/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8/2, P5/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||  ||  ||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||  ||  ||




Line 694: Line 697:
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.&lt;br /&gt;
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks.&lt;br /&gt;
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks. 13b is incompatible with {P8, P5/2}, but 13 isn't. However, 13 is incompatible with heptatonic notation.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
(table is under construction)&lt;br /&gt;
(table is under construction)&lt;br /&gt;
Line 1,004: Line 1,007:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;15, 18b*, 24, 30*&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;15, 18b*, 24, 30&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,116: Line 1,119:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12, 16, 20, 24*, 28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,245: Line 1,248:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;