Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 624831307 - Original comment: **
Wikispaces>TallKite
**Imported revision 624832143 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-13 20:56:07 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-13 22:11:26 UTC</tt>.<br>
: The original revision id was <tt>624831307</tt>.<br>
: The original revision id was <tt>624832143</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 66: Line 66:


For rank-2, we can compute the pergen directly from the square matrix = [(x y), (0, z)]. Let the pergen be (P8/m, M/n), where M is the multigen, P is the period P8/m, and G is the generator M/n.
For rank-2, we can compute the pergen directly from the square matrix = [(x y), (0, z)]. Let the pergen be (P8/m, M/n), where M is the multigen, P is the period P8/m, and G is the generator M/n.
2/1 = P8 = xP, thus P = P8/x
2/1 = P8 = x·P, thus P = P8/x
3/1 = P12 = yP + zG, thus G = [P12 - y(P8/x)] / z = [-yP8 + xP12]/xz = (-y, x) / xz
3/1 = P12 = y·P + z·G, thus G = [P12 - (P8/x)] / z = [-y·P8 + x·P12] / xz = (-y, x) / xz


To get alternate generators, add n periods to G, with n ranging from -x (subtracting a full octave) to +x (adding a full octave).
M's 3-limit monzo is (-y, x). To get alternate generators, add n periods to G, with n ranging from -x (subtracting a full octave) to +x (adding a full octave).
G = (-y, x) / xz + nP = (-y, x) / xz + nP8/x = (nz - y, x) / xz
G = (-y, x) / xz + nP = (-y, x) / xz + n·P8/x = (n·z - y, x) / xz


&lt;span style="display: block; text-align: center;"&gt;**&lt;span style="font-size: 110%;"&gt;The rank-2 pergen from the [(x, y) (0, z)] square mapping is (P8/x, (nz-y,x)/xz), with -x &lt;= n &lt;= x&lt;/span&gt;**
&lt;span style="display: block; text-align: center;"&gt;**&lt;span style="font-size: 110%;"&gt;The rank-2 pergen from the [(x, y), (0, z)] square mapping is (P8/x, (n·z-y,x)/xz), with -x &lt;= n &lt;= x&lt;/span&gt;**
&lt;/span&gt;
&lt;/span&gt;
A corollary of this formula is that if the octave is unsplit, the multigen is some voicing of the fifth, i.e. some perfect interval. Imperfect multigens are fairly rare. Less than 4% of all pergens have an imperfect multigen.
A corollary of this formula is that if the octave is unsplit, the multigen is some voicing of the fifth, i.e. some perfect interval. Imperfect multigens are fairly rare. Less than 4% of all pergens have an imperfect multigen.
Line 318: Line 318:


=__Further Discussion__=  
=__Further Discussion__=  
==Searching for pergens==
To list all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (n·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a viable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T to the range that supports heptatonic notation, in which the 5th is between 7\13 and 3\5. This corresponds to 13b-edo and 5-edo. Thus T is between 20/13 and 8/5 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:
If z &gt; 0, then y is at least ceiling (x·(20/13 - z/2)) and at most floor (x·8/5)
If z &lt; 0, then y is at least ceiling (x·20/13) and at most floor (x·(8/5 - z/2))
Next we loop through all combinations of x and z in such a way that larger values of x and z come last:
i = 1; loop (maxFraction,
j = 1; loop (i - 1,
makeMapping (i, j); makeMapping (i, -j);
makeMapping (j, i); makeMapping (j, -i);
j += 1;
);
makeMapping (i, i); makeMapping (i, -i);
i += 1;
);
The makeMapping function uses the two parameters as x and z, and loops through all valid values of y. Every value of n from -x to x-1 is tested, and the one that minimizes the multigen's splitting fraction and cents is chosen. This combination of x, y, z and n makes a valid pergen. This pergen is added to the list, unless it's a duplicate. The pergens are almost but not quite in the proper order, they will need to be sorted.
In the Supplemental Materials section, a program is linked to that performs these calculations and lists all pergens. It also lists suggested enharmonics.
It's possible that allowing y and/or n to range further might produce muscally useful pergens. More study is needed.


==Extremely large multigens==  
==Extremely large multigens==  
Line 586: Line 610:
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pergen&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:41:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:41 --&gt; &lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pergen&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:41:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:41 --&gt; &lt;/h1&gt;
  &lt;!-- ws:start:WikiTextTocRule:75:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:75 --&gt;&lt;!-- ws:start:WikiTextTocRule:76: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
  &lt;!-- ws:start:WikiTextTocRule:77:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:77 --&gt;&lt;!-- ws:start:WikiTextTocRule:78: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:76 --&gt;&lt;!-- ws:start:WikiTextTocRule:77: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:78 --&gt;&lt;!-- ws:start:WikiTextTocRule:79: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:77 --&gt;&lt;!-- ws:start:WikiTextTocRule:78: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Derivation"&gt;Derivation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:79 --&gt;&lt;!-- ws:start:WikiTextTocRule:80: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Derivation"&gt;Derivation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:78 --&gt;&lt;!-- ws:start:WikiTextTocRule:79: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:80 --&gt;&lt;!-- ws:start:WikiTextTocRule:81: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:79 --&gt;&lt;!-- ws:start:WikiTextTocRule:80: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Further Discussion"&gt;Further Discussion&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:81 --&gt;&lt;!-- ws:start:WikiTextTocRule:82: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Further Discussion"&gt;Further Discussion&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:80 --&gt;&lt;!-- ws:start:WikiTextTocRule:81: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Extremely large multigens"&gt;Extremely large multigens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:82 --&gt;&lt;!-- ws:start:WikiTextTocRule:83: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Searching for pergens"&gt;Searching for pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:81 --&gt;&lt;!-- ws:start:WikiTextTocRule:82: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Singles and doubles"&gt;Singles and doubles&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:83 --&gt;&lt;!-- ws:start:WikiTextTocRule:84: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Extremely large multigens"&gt;Extremely large multigens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:82 --&gt;&lt;!-- ws:start:WikiTextTocRule:83: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding an example temperament"&gt;Finding an example temperament&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:84 --&gt;&lt;!-- ws:start:WikiTextTocRule:85: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Singles and doubles"&gt;Singles and doubles&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:83 --&gt;&lt;!-- ws:start:WikiTextTocRule:84: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Ratio and cents of the accidentals"&gt;Ratio and cents of the accidentals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:85 --&gt;&lt;!-- ws:start:WikiTextTocRule:86: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding an example temperament"&gt;Finding an example temperament&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:84 --&gt;&lt;!-- ws:start:WikiTextTocRule:85: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding a notation for a pergen"&gt;Finding a notation for a pergen&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:86 --&gt;&lt;!-- ws:start:WikiTextTocRule:87: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Ratio and cents of the accidentals"&gt;Ratio and cents of the accidentals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:85 --&gt;&lt;!-- ws:start:WikiTextTocRule:86: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate enharmonics"&gt;Alternate enharmonics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:87 --&gt;&lt;!-- ws:start:WikiTextTocRule:88: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding a notation for a pergen"&gt;Finding a notation for a pergen&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:86 --&gt;&lt;!-- ws:start:WikiTextTocRule:87: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate keyspans and stepspans"&gt;Alternate keyspans and stepspans&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:88 --&gt;&lt;!-- ws:start:WikiTextTocRule:89: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate enharmonics"&gt;Alternate enharmonics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:87 --&gt;&lt;!-- ws:start:WikiTextTocRule:88: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Chord names and scale names"&gt;Chord names and scale names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:89 --&gt;&lt;!-- ws:start:WikiTextTocRule:90: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate keyspans and stepspans"&gt;Alternate keyspans and stepspans&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:88 --&gt;&lt;!-- ws:start:WikiTextTocRule:89: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Combining pergens"&gt;Combining pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:90 --&gt;&lt;!-- ws:start:WikiTextTocRule:91: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Chord names and scale names"&gt;Chord names and scale names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:89 --&gt;&lt;!-- ws:start:WikiTextTocRule:90: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and EDOs"&gt;Pergens and EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:91 --&gt;&lt;!-- ws:start:WikiTextTocRule:92: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Combining pergens"&gt;Combining pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:90 --&gt;&lt;!-- ws:start:WikiTextTocRule:91: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Supplemental materials"&gt;Supplemental materials&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:92 --&gt;&lt;!-- ws:start:WikiTextTocRule:93: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and EDOs"&gt;Pergens and EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:91 --&gt;&lt;!-- ws:start:WikiTextTocRule:92: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Misc notes"&gt;Misc notes&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:93 --&gt;&lt;!-- ws:start:WikiTextTocRule:94: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Supplemental materials"&gt;Supplemental materials&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:92 --&gt;&lt;!-- ws:start:WikiTextTocRule:93: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:94 --&gt;&lt;!-- ws:start:WikiTextTocRule:95: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Misc notes"&gt;Misc notes&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:93 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:43:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:43 --&gt;&lt;u&gt;&lt;strong&gt;Definition&lt;/strong&gt;&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:95 --&gt;&lt;!-- ws:start:WikiTextTocRule:96: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:96 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:43:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:43 --&gt;&lt;u&gt;&lt;strong&gt;Definition&lt;/strong&gt;&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 865: Line 890:
&lt;br /&gt;
&lt;br /&gt;
For rank-2, we can compute the pergen directly from the square matrix = [(x y), (0, z)]. Let the pergen be (P8/m, M/n), where M is the multigen, P is the period P8/m, and G is the generator M/n.&lt;br /&gt;
For rank-2, we can compute the pergen directly from the square matrix = [(x y), (0, z)]. Let the pergen be (P8/m, M/n), where M is the multigen, P is the period P8/m, and G is the generator M/n.&lt;br /&gt;
2/1 = P8 = xP, thus P = P8/x&lt;br /&gt;
2/1 = P8 = x·P, thus P = P8/x&lt;br /&gt;
3/1 = P12 = yP + zG, thus G = [P12 - y(P8/x)] / z = [-yP8 + xP12]/xz = (-y, x) / xz&lt;br /&gt;
3/1 = P12 = y·P + z·G, thus G = [P12 - (P8/x)] / z = [-y·P8 + x·P12] / xz = (-y, x) / xz&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
To get alternate generators, add n periods to G, with n ranging from -x (subtracting a full octave) to +x (adding a full octave).&lt;br /&gt;
M's 3-limit monzo is (-y, x). To get alternate generators, add n periods to G, with n ranging from -x (subtracting a full octave) to +x (adding a full octave).&lt;br /&gt;
G = (-y, x) / xz + nP = (-y, x) / xz + nP8/x = (nz - y, x) / xz&lt;br /&gt;
G = (-y, x) / xz + nP = (-y, x) / xz + n·P8/x = (n·z - y, x) / xz&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;span style="display: block; text-align: center;"&gt;&lt;strong&gt;&lt;span style="font-size: 110%;"&gt;The rank-2 pergen from the [(x, y) (0, z)] square mapping is (P8/x, (nz-y,x)/xz), with -x &amp;lt;= n &amp;lt;= x&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;span style="display: block; text-align: center;"&gt;&lt;strong&gt;&lt;span style="font-size: 110%;"&gt;The rank-2 pergen from the [(x, y), (0, z)] square mapping is (P8/x, (n·z-y,x)/xz), with -x &amp;lt;= n &amp;lt;= x&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
A corollary of this formula is that if the octave is unsplit, the multigen is some voicing of the fifth, i.e. some perfect interval. Imperfect multigens are fairly rare. Less than 4% of all pergens have an imperfect multigen.&lt;br /&gt;
A corollary of this formula is that if the octave is unsplit, the multigen is some voicing of the fifth, i.e. some perfect interval. Imperfect multigens are fairly rare. Less than 4% of all pergens have an imperfect multigen.&lt;br /&gt;
Line 2,174: Line 2,199:
&lt;!-- ws:start:WikiTextHeadingRule:49:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Further Discussion"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:49 --&gt;&lt;u&gt;Further Discussion&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:49:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Further Discussion"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:49 --&gt;&lt;u&gt;Further Discussion&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:51:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Further Discussion-Extremely large multigens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:51 --&gt;Extremely large multigens&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:51:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Further Discussion-Searching for pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:51 --&gt;Searching for pergens&lt;/h2&gt;
&lt;br /&gt;
To list all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (n·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a viable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T to the range that supports heptatonic notation, in which the 5th is between 7\13 and 3\5. This corresponds to 13b-edo and 5-edo. Thus T is between 20/13 and 8/5 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;
&lt;br /&gt;
If z &amp;gt; 0, then y is at least ceiling (x·(20/13 - z/2)) and at most floor (x·8/5)&lt;br /&gt;
If z &amp;lt; 0, then y is at least ceiling (x·20/13) and at most floor (x·(8/5 - z/2))&lt;br /&gt;
&lt;br /&gt;
Next we loop through all combinations of x and z in such a way that larger values of x and z come last:&lt;br /&gt;
i = 1; loop (maxFraction,&lt;br /&gt;
j = 1; loop (i - 1,&lt;br /&gt;
makeMapping (i, j); makeMapping (i, -j);&lt;br /&gt;
makeMapping (j, i); makeMapping (j, -i);&lt;br /&gt;
j += 1;&lt;br /&gt;
);&lt;br /&gt;
makeMapping (i, i); makeMapping (i, -i);&lt;br /&gt;
i += 1;&lt;br /&gt;
);&lt;br /&gt;
&lt;br /&gt;
The makeMapping function uses the two parameters as x and z, and loops through all valid values of y. Every value of n from -x to x-1 is tested, and the one that minimizes the multigen's splitting fraction and cents is chosen. This combination of x, y, z and n makes a valid pergen. This pergen is added to the list, unless it's a duplicate. The pergens are almost but not quite in the proper order, they will need to be sorted.&lt;br /&gt;
&lt;br /&gt;
In the Supplemental Materials section, a program is linked to that performs these calculations and lists all pergens. It also lists suggested enharmonics.&lt;br /&gt;
&lt;br /&gt;
It's possible that allowing y and/or n to range further might produce muscally useful pergens. More study is needed.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:53:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Further Discussion-Extremely large multigens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:53 --&gt;Extremely large multigens&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
So far, the largest multigen has been a 12th. As the multigen fractions get larger, the multigen gets quite wide. To avoid cumbersome degree names like 16th or 22nd, for degrees above 12, the widening is indicated with one &amp;quot;W&amp;quot; per octave. Thus 32/9 = Wm7, 9/2 = WWM2 or WM9, etc. For (P8, M/n), valid multigens are any voicing of the fifth that is less than n/2 octaves. For (P8, M/6), the multigen can be P4, P5, P11, P12, WWP4 or WWP5.&lt;br /&gt;
So far, the largest multigen has been a 12th. As the multigen fractions get larger, the multigen gets quite wide. To avoid cumbersome degree names like 16th or 22nd, for degrees above 12, the widening is indicated with one &amp;quot;W&amp;quot; per octave. Thus 32/9 = Wm7, 9/2 = WWM2 or WM9, etc. For (P8, M/n), valid multigens are any voicing of the fifth that is less than n/2 octaves. For (P8, M/6), the multigen can be P4, P5, P11, P12, WWP4 or WWP5.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:53:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Further Discussion-Singles and doubles"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:53 --&gt;Singles and doubles&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:55:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Further Discussion-Singles and doubles"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:55 --&gt;Singles and doubles&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
If a pergen has only one fraction, like (P8/2, P5) or (P8, P4/3), the pergen is a &lt;strong&gt;single-split&lt;/strong&gt; pergen. If it has two fractions, it's a &lt;strong&gt;double-split&lt;/strong&gt; pergen. A single-split pergen can result from tempering out only a single comma, although it can be created by multiple commas. A single-split pergen can be notated with only ups and downs, called &lt;strong&gt;single-pair&lt;/strong&gt; notation because it adds only a single pair of accidentals to conventional notation. &lt;strong&gt;Double-pair&lt;/strong&gt; notation uses both ups/downs and highs/lows. In general, single-pair notation is preferred, because it's simpler. However, double-pair notation may be preferred, especially if the enharmonic for single-pair notation is a 3rd or larger. In this article, the choice of which pair of accidentals is used for which enharmonic is arbitrary, and ups/downs can be freely exchanged with highs/lows.&lt;br /&gt;
If a pergen has only one fraction, like (P8/2, P5) or (P8, P4/3), the pergen is a &lt;strong&gt;single-split&lt;/strong&gt; pergen. If it has two fractions, it's a &lt;strong&gt;double-split&lt;/strong&gt; pergen. A single-split pergen can result from tempering out only a single comma, although it can be created by multiple commas. A single-split pergen can be notated with only ups and downs, called &lt;strong&gt;single-pair&lt;/strong&gt; notation because it adds only a single pair of accidentals to conventional notation. &lt;strong&gt;Double-pair&lt;/strong&gt; notation uses both ups/downs and highs/lows. In general, single-pair notation is preferred, because it's simpler. However, double-pair notation may be preferred, especially if the enharmonic for single-pair notation is a 3rd or larger. In this article, the choice of which pair of accidentals is used for which enharmonic is arbitrary, and ups/downs can be freely exchanged with highs/lows.&lt;br /&gt;
Line 2,186: Line 2,235:
A pergen (P8/m, (a,b)/n) is a false double if and only if GCD (m,n) = |b|. The next section discusses an alternate test.&lt;br /&gt;
A pergen (P8/m, (a,b)/n) is a false double if and only if GCD (m,n) = |b|. The next section discusses an alternate test.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:55:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Further Discussion-Finding an example temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:55 --&gt;Finding an example temperament&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:57:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Further Discussion-Finding an example temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:57 --&gt;Finding an example temperament&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
To find an example of a temperament with a specific pergen, we must find the comma(s) the temperament tempers out. To construct a comma that creates a single-split pergen, find a ratio for P or G that contains only one higher prime, with exponent ±1, of appropriate cents to add up to approximately the octave or the multigen. The comma is the difference between the stacked ratios and the larger interval. For example, (P8/4, P5) requires a P of about 300¢. The comma is the difference between 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P and P8. If P is 6/5, the comma is 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P - P8 = (6/5)&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; ÷ (2/1) = 648/625. If P is 7/6, the comma is P8 - 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P = (2/1) · (7/6)&lt;span style="vertical-align: super;"&gt;-4&lt;/span&gt;. Neither 13/11 nor 32/27 would work for P, too many and too few higher primes respectively. (P8, P4/3) requires a G of about (498¢)/3 = 166¢, perhaps 10/9. The comma is 3&lt;span class="nowrap"&gt;⋅&lt;/span&gt;G - P4 = (10/9)^3 ÷ (4/3) = 250/243.&lt;br /&gt;
To find an example of a temperament with a specific pergen, we must find the comma(s) the temperament tempers out. To construct a comma that creates a single-split pergen, find a ratio for P or G that contains only one higher prime, with exponent ±1, of appropriate cents to add up to approximately the octave or the multigen. The comma is the difference between the stacked ratios and the larger interval. For example, (P8/4, P5) requires a P of about 300¢. The comma is the difference between 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P and P8. If P is 6/5, the comma is 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P - P8 = (6/5)&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; ÷ (2/1) = 648/625. If P is 7/6, the comma is P8 - 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P = (2/1) · (7/6)&lt;span style="vertical-align: super;"&gt;-4&lt;/span&gt;. Neither 13/11 nor 32/27 would work for P, too many and too few higher primes respectively. (P8, P4/3) requires a G of about (498¢)/3 = 166¢, perhaps 10/9. The comma is 3&lt;span class="nowrap"&gt;⋅&lt;/span&gt;G - P4 = (10/9)^3 ÷ (4/3) = 250/243.&lt;br /&gt;
Line 2,208: Line 2,257:
There are also alternate enharmonics, see below. For double-pair notation, there are also equivalent enharmonics.&lt;br /&gt;
There are also alternate enharmonics, see below. For double-pair notation, there are also equivalent enharmonics.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:57:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Further Discussion-Ratio and cents of the accidentals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:57 --&gt;Ratio and cents of the accidentals&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:59:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Further Discussion-Ratio and cents of the accidentals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:59 --&gt;Ratio and cents of the accidentals&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
In a 5-limit temperament, the up symbol is generally 81/80. However, for diminished (which sets 6/5 = P8/4), ^1 = 80/81. in every temperament except those in the meantone family, the 81/80 comma is not tempered out, but it is still tempered, just like every ratio. Occasionally 81/80 is tempered so far that it becomes a descending interval. In a 2.3.7 rank-2 temperament, ^1 is often 64/63, or perhaps 63/64.&lt;br /&gt;
In a 5-limit temperament, the up symbol is generally 81/80. However, for diminished (which sets 6/5 = P8/4), ^1 = 80/81. in every temperament except those in the meantone family, the 81/80 comma is not tempered out, but it is still tempered, just like every ratio. Occasionally 81/80 is tempered so far that it becomes a descending interval. In a 2.3.7 rank-2 temperament, ^1 is often 64/63, or perhaps 63/64.&lt;br /&gt;
Line 2,214: Line 2,263:
We can assign cents to each accidental symbol. First let c = the cents of the tuning's 5th from 700¢, the 12edo 5th. Thus P5 = 700¢ + c. From this we can calculate the cents of any 3-limit interval. Since the enharmonic = 0¢, we can derive the cents of the accidental. If the enharmonic is vvA1, then vvA1 = 0¢, and ^1 = (A1)/2 = (100¢ + 7c)/2 = 50¢ + 3.5c. If the 5th is 696¢, c = -4 and the up symbol equals 36¢. /1 can be similarly derived from its enharmonic. #1 always equals 100¢ + c.&lt;br /&gt;
We can assign cents to each accidental symbol. First let c = the cents of the tuning's 5th from 700¢, the 12edo 5th. Thus P5 = 700¢ + c. From this we can calculate the cents of any 3-limit interval. Since the enharmonic = 0¢, we can derive the cents of the accidental. If the enharmonic is vvA1, then vvA1 = 0¢, and ^1 = (A1)/2 = (100¢ + 7c)/2 = 50¢ + 3.5c. If the 5th is 696¢, c = -4 and the up symbol equals 36¢. /1 can be similarly derived from its enharmonic. #1 always equals 100¢ + c.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:59:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Further Discussion-Finding a notation for a pergen"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:59 --&gt;Finding a notation for a pergen&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:61:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Further Discussion-Finding a notation for a pergen"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:61 --&gt;Finding a notation for a pergen&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
There are multiple notations for a given pergen, depending on the enharmonic interval(s). Preferably, the enharmonic's degree will be a unison or a 2nd, because equating two notes a 3rd or 4th apart is very disconcerting. If it's a unison, it will always be an A1. (P1 would be pointless, d1 would be inverted to A1, and AA1 would be split into two A1's.) If it's a 2nd, preferably it will be a m2 or a d2 or a dd2, and not a M2 or an A2 or a ddd2. There is an easy method for finding such a pergen, if one exists. First, some terminology and basic concepts:&lt;br /&gt;
There are multiple notations for a given pergen, depending on the enharmonic interval(s). Preferably, the enharmonic's degree will be a unison or a 2nd, because equating two notes a 3rd or 4th apart is very disconcerting. If it's a unison, it will always be an A1. (P1 would be pointless, d1 would be inverted to A1, and AA1 would be split into two A1's.) If it's a 2nd, preferably it will be a m2 or a d2 or a dd2, and not a M2 or an A2 or a ddd2. There is an easy method for finding such a pergen, if one exists. First, some terminology and basic concepts:&lt;br /&gt;
Line 2,249: Line 2,298:
This is a lot of math, but it only needs to be done once for each pergen.&lt;br /&gt;
This is a lot of math, but it only needs to be done once for each pergen.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:61:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Further Discussion-Alternate enharmonics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:61 --&gt;Alternate enharmonics&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:63:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Further Discussion-Alternate enharmonics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:63 --&gt;Alternate enharmonics&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12·[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded very inaccurately all the way up to [4,2] = M3. The enharmonic becomes [33,19] - 12·[4,2] = [-15,-5] = -5·[3,1] = -5·v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.&lt;br /&gt;
Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12·[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded very inaccurately all the way up to [4,2] = M3. The enharmonic becomes [33,19] - 12·[4,2] = [-15,-5] = -5·[3,1] = -5·v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.&lt;br /&gt;
Line 2,272: Line 2,321:
Sometimes the temperament implies an enharmonic that isn't even a 2nd. For example, liese is (P8, P11/3), with G = 7/5 = d5. E = 3·d5 - P11 = descending dd3.&lt;br /&gt;
Sometimes the temperament implies an enharmonic that isn't even a 2nd. For example, liese is (P8, P11/3), with G = 7/5 = d5. E = 3·d5 - P11 = descending dd3.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:63:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Further Discussion-Alternate keyspans and stepspans"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:63 --&gt;Alternate keyspans and stepspans&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:65:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Further Discussion-Alternate keyspans and stepspans"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:65 --&gt;Alternate keyspans and stepspans&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
One might wonder, when using gedras, why 12-edo keyspans? Why heptatonic stepspans? Heptatonic is best because conventional notation is heptatonic, and we want to minimize the heptatonic stepspan of the enharmonic. In order for the matrix to be invertible, the edo must be connected to the 4\7 kite on the scale tree. The only choices are 5-edo, 12-edo, 19-edo, 26-edo, 33-edo, 40-edo and 47-edo, and on the other side, 2-edo, 9-edo, 16-edo and 23-edo. Any of these edos would also work. 12-edo is merely the most convenient choice, because of its familiarity. Dividing the gedra directly only gives you an estimate of the best period or generator. As noted in the previous section, to improve the enharmonic, this initial estimate must often be revised. So the choice of estimating edo isn't very important.&lt;br /&gt;
One might wonder, when using gedras, why 12-edo keyspans? Why heptatonic stepspans? Heptatonic is best because conventional notation is heptatonic, and we want to minimize the heptatonic stepspan of the enharmonic. In order for the matrix to be invertible, the edo must be connected to the 4\7 kite on the scale tree. The only choices are 5-edo, 12-edo, 19-edo, 26-edo, 33-edo, 40-edo and 47-edo, and on the other side, 2-edo, 9-edo, 16-edo and 23-edo. Any of these edos would also work. 12-edo is merely the most convenient choice, because of its familiarity. Dividing the gedra directly only gives you an estimate of the best period or generator. As noted in the previous section, to improve the enharmonic, this initial estimate must often be revised. So the choice of estimating edo isn't very important.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:65:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Further Discussion-Chord names and scale names"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:65 --&gt;Chord names and scale names&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:67:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Further Discussion-Chord names and scale names"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:67 --&gt;Chord names and scale names&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Using pergens, all rank-2 chords can be named using ups and downs, and if needed highs and lows as well. See the &lt;a class="wiki_link" href="/Ups%20and%20Downs%20Notation"&gt;ups and downs&lt;/a&gt; page for chord naming conventions. The genchain and/or the perchain creates a lattice in which each note and each interval has its own name. The many enharmonic equivalents allow proper chord spelling.&lt;br /&gt;
Using pergens, all rank-2 chords can be named using ups and downs, and if needed highs and lows as well. See the &lt;a class="wiki_link" href="/Ups%20and%20Downs%20Notation"&gt;ups and downs&lt;/a&gt; page for chord naming conventions. The genchain and/or the perchain creates a lattice in which each note and each interval has its own name. The many enharmonic equivalents allow proper chord spelling.&lt;br /&gt;
Line 2,760: Line 2,809:
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.&lt;br /&gt;
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:67:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Further Discussion-Combining pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:67 --&gt;Combining pergens&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:69:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Further Discussion-Combining pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:69 --&gt;Combining pergens&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Tempering out 250/243 creates third-4th, and 49/48 creates half-4th, and tempering out both commas creates sixth-4th. Therefore (P8, P4/3) + (P8, P4/2) = (P8, P4/6).&lt;br /&gt;
Tempering out 250/243 creates third-4th, and 49/48 creates half-4th, and tempering out both commas creates sixth-4th. Therefore (P8, P4/3) + (P8, P4/2) = (P8, P4/6).&lt;br /&gt;
Line 2,768: Line 2,817:
However, (P8/2, M2/4) + (P8, P4/2) = (P8/4, P4/2), so the sum isn't always obvious.&lt;br /&gt;
However, (P8/2, M2/4) + (P8, P4/2) = (P8/4, P4/2), so the sum isn't always obvious.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:69:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Further Discussion-Pergens and EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:69 --&gt;Pergens and EDOs&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:71:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc15"&gt;&lt;a name="Further Discussion-Pergens and EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:71 --&gt;Pergens and EDOs&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.&lt;br /&gt;
Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.&lt;br /&gt;
Line 3,076: Line 3,125:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:71:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc15"&gt;&lt;a name="Further Discussion-Supplemental materials"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:71 --&gt;Supplemental materials&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:73:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc16"&gt;&lt;a name="Further Discussion-Supplemental materials"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:73 --&gt;Supplemental materials&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block.&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:3833:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:3833 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:3859:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:3859 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
This app lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
This app lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
(link coming soon)&lt;br /&gt;
(link coming soon)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:73:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc16"&gt;&lt;a name="Further Discussion-Misc notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:73 --&gt;Misc notes&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:75:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc17"&gt;&lt;a name="Further Discussion-Misc notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:75 --&gt;Misc notes&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Pergens were discovered by Kite Giedraitis in 2017, and developed with the help of Praveen Venkataramana. Earlier drafts of this article can be found at &lt;!-- ws:start:WikiTextUrlRule:3834:http://xenharmonic.wikispaces.com/pergen+names --&gt;&lt;a href="http://xenharmonic.wikispaces.com/pergen+names"&gt;http://xenharmonic.wikispaces.com/pergen+names&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:3834 --&gt;&lt;br /&gt;
Pergens were discovered by Kite Giedraitis in 2017, and developed with the help of Praveen Venkataramana. Earlier drafts of this article can be found at &lt;!-- ws:start:WikiTextUrlRule:3860:http://xenharmonic.wikispaces.com/pergen+names --&gt;&lt;a href="http://xenharmonic.wikispaces.com/pergen+names"&gt;http://xenharmonic.wikispaces.com/pergen+names&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:3860 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;