Kite's thoughts on pergens: Difference between revisions
Wikispaces>TallKite **Imported revision 625025957 - Original comment: ** |
Wikispaces>TallKite **Imported revision 625029683 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-18 | : This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-18 05:29:17 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>625029683</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 463: | Line 463: | ||
For example, small triple amber tempers out (12,-1,0,0,-3) from 2.3.11, making a third-11th pergen. The generator is 11/8. If 11/8 is notated as an ^4, the enharmonic is v<span style="vertical-align: super;">3</span>M2, but if 11/8 is notated as a vA4, the enharmonic is ^<span style="vertical-align: super;">3</span>dd2. | For example, small triple amber tempers out (12,-1,0,0,-3) from 2.3.11, making a third-11th pergen. The generator is 11/8. If 11/8 is notated as an ^4, the enharmonic is v<span style="vertical-align: super;">3</span>M2, but if 11/8 is notated as a vA4, the enharmonic is ^<span style="vertical-align: super;">3</span>dd2. | ||
Sometimes the temperament implies an enharmonic that isn't even a 2nd. For example, liese (2.3.5.7 with 81/80 and 1029/1000) is (P8, P11/3), with G = 7/5 = d5. E = 3·d5 - P11 = descending dd3. | |||
This is all for single-comma temperaments. Each comma of a multiple-comma temperament also implies an enharmonic, and they may conflict. True double pergens, which are always multi-comma, have multiple notations. For example, the half-everything pergen has 3 possible notations, all equally valid. Even single-split pergens can have multiple commas that imply different enharmonics. | This is all for single-comma temperaments. Each comma of a multiple-comma temperament also implies an enharmonic, and they may conflict. True double pergens, which are always multi-comma, have multiple notations. For example, the half-everything pergen has 3 possible notations, all equally valid. Even single-split pergens can have multiple commas that imply different enharmonics. | ||
==Alternate keyspans and stepspans== | ==Alternate keyspans and stepspans== | ||
Line 482: | Line 482: | ||
A different temperament may result in the same pergen with the same enharmonic, but may still produce a different name for the same chord. For example, injera (2.3.5.7 with 81/80 and 50/49, or rryy&gT) is also half-8ve. However, the tipping point for the d2 enharmonic is at 700¢, and while pajara favors a fifth wider than that, injera favors a fifth narrower than that. Hence ups and downs are exchanged, and E = vvd2, and P = ^A4 = vd5. The mapping is [(2 2 0 1) (0 1 4 4)] = [(2 0) (2 1) (0 4) (1 4)]. Because the square mapping (the first two columns) are the same, the pergen is the same. Because the other columns are different, the higher primes are mapped differently. 5/4 = M3 and 7/4 = M3 + vd5 = vm7, and 4:5:6:7 = C E G Bbv = C,v7. | A different temperament may result in the same pergen with the same enharmonic, but may still produce a different name for the same chord. For example, injera (2.3.5.7 with 81/80 and 50/49, or rryy&gT) is also half-8ve. However, the tipping point for the d2 enharmonic is at 700¢, and while pajara favors a fifth wider than that, injera favors a fifth narrower than that. Hence ups and downs are exchanged, and E = vvd2, and P = ^A4 = vd5. The mapping is [(2 2 0 1) (0 1 4 4)] = [(2 0) (2 1) (0 4) (1 4)]. Because the square mapping (the first two columns) are the same, the pergen is the same. Because the other columns are different, the higher primes are mapped differently. 5/4 = M3 and 7/4 = M3 + vd5 = vm7, and 4:5:6:7 = C E G Bbv = C,v7. | ||
MOS scales tend to correspond to just one or two pergens. The table below shows the pergen that best corresponds to each MOS scale, as well as any others that could generate the scale. | Scales can be named similar to Meantone[7], as (P8, P5) [7] = unsplit heptatonic, or (P8, P5/2) [7] = half-fifth pentatonic, etc. The number of notes in the scale tend to be a multiple of m, so that half-octave pergens have scales with an even number of notes. | ||
== == | |||
==MOS scales== | |||
MOS scales tend to correspond to just one or two pergens. The table below shows the pergen that best corresponds to each MOS scale, as well as any others that could also generate the scale. The best pergen is the one that makes a reasonable L/s ratio. A ratio of 3 or more makes a scale that's too lopsided. | |||
||||||~ Tetratonic MOS scales ||~ secondary examples || | ||||||~ Tetratonic MOS scales ||~ secondary examples || | ||
Line 537: | Line 541: | ||
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4. | Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4. | ||
A pergen | |||
||~ pergen ||~ ||~ MOS scales 5-12 || | |||
||= (P8, P5) ||= unsplit ||= 5, 7, 12, 17/19 || | |||
||~ halves ||~ ||~ || | |||
||= (P8/2, P5) ||= half-8ve ||= 4, 6, 8, 10, 12 || | |||
||= (P8, P4/2) ||= half-4th ||= 4, 5, 9, 14, 19 || | |||
||= (P8, P5/2) ||= half-5th ||= 7, 10, 17 || | |||
||= (P8/2, P4/2) ||= half-everything ||= 4, 6, 10, 14, 24 || | |||
||~ thirds ||~ ||~ || | |||
||= (P8/3, P5) ||= third-8ve ||= 6, 9, 12, 15/21 || | |||
||= (P8, P4/3) ||= third-4th ||= || | |||
||= (P8, P5/3) ||= third-5th ||= || | |||
||= (P8, P11/3) ||= third-11th ||= || | |||
||= (P8/3, P4/2) ||= third-8ve, half-4th ||= || | |||
||= (P8/3, P5/2) ||= third-8ve, half-5th ||= || | |||
||= (P8/2, P4/3) ||= half-8ve, third-4th ||= || | |||
||= (P8/2, P5/3) ||= half-8ve, third-5th ||= || | |||
||= (P8/2, P11/3) ||= half-8ve, third-11th ||= || | |||
||= (P8/3, P4/3) ||= third-everything ||= || | |||
||~ quarters ||~ ||~ || | |||
||= (P8/4, P5) ||= ||= || | |||
||= (P8, P4/4) ||= ||= || | |||
||= (P8, P5/4) ||= ||= || | |||
||= (P8, P11/4) ||= ||= || | |||
||= (P8, P12/4) ||= ||= || | |||
||= (P8/4, P4/2) ||= ||= || | |||
||= (P8/2, M2/4) ||= ||= || | |||
||= (P8/2, P4/4) ||= ||= || | |||
||= (P8/2, P5/4) ||= ||= || | |||
||= (P8/4, P4/3) ||= ||= || | |||
||= (P8/4, P5/3) ||= ||= || | |||
||= (P8/4, P11/3) ||= ||= || | |||
||= (P8/3, P4/4) ||= ||= || | |||
||= (P8/3, P5/4) ||= ||= || | |||
||= (P8/3, P11/4) ||= ||= || | |||
||= (P8/3, P12/4) ||= ||= || | |||
||= (P8/4, P4/4) ||= ||= || | |||
==Combining pergens== | ==Combining pergens== | ||
Line 692: | Line 738: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>pergen</title></head><body><!-- ws:start:WikiTextHeadingRule:52:&lt;h1&gt; --><h1 id="toc0"><!-- ws:end:WikiTextHeadingRule:52 --> </h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>pergen</title></head><body><!-- ws:start:WikiTextHeadingRule:52:&lt;h1&gt; --><h1 id="toc0"><!-- ws:end:WikiTextHeadingRule:52 --> </h1> | ||
<!-- ws:start:WikiTextTocRule: | <!-- ws:start:WikiTextTocRule:92:&lt;img id=&quot;wikitext@@toc@@normal&quot; class=&quot;WikiMedia WikiMediaToc&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/normal?w=225&amp;h=100&quot;/&gt; --><div id="toc"><h1 class="nopad">Table of Contents</h1><!-- ws:end:WikiTextTocRule:92 --><!-- ws:start:WikiTextTocRule:93: --><div style="margin-left: 1em;"><a href="#toc0"> </a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:93 --><!-- ws:start:WikiTextTocRule:94: --><div style="margin-left: 1em;"><a href="#Definition">Definition</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:94 --><!-- ws:start:WikiTextTocRule:95: --><div style="margin-left: 1em;"><a href="#Derivation">Derivation</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:95 --><!-- ws:start:WikiTextTocRule:96: --><div style="margin-left: 1em;"><a href="#Applications">Applications</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:96 --><!-- ws:start:WikiTextTocRule:97: --><div style="margin-left: 1em;"><a href="#Further Discussion">Further Discussion</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:97 --><!-- ws:start:WikiTextTocRule:98: --><div style="margin-left: 2em;"><a href="#Further Discussion-Searching for pergens">Searching for pergens</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:98 --><!-- ws:start:WikiTextTocRule:99: --><div style="margin-left: 2em;"><a href="#Further Discussion-Extremely large multigens">Extremely large multigens</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:99 --><!-- ws:start:WikiTextTocRule:100: --><div style="margin-left: 2em;"><a href="#Further Discussion-Singles and doubles">Singles and doubles</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:100 --><!-- ws:start:WikiTextTocRule:101: --><div style="margin-left: 2em;"><a href="#Further Discussion-Finding an example temperament">Finding an example temperament</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:101 --><!-- ws:start:WikiTextTocRule:102: --><div style="margin-left: 2em;"><a href="#Further Discussion-Ratio and cents of the accidentals">Ratio and cents of the accidentals</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:102 --><!-- ws:start:WikiTextTocRule:103: --><div style="margin-left: 2em;"><a href="#Further Discussion-Finding a notation for a pergen">Finding a notation for a pergen</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:103 --><!-- ws:start:WikiTextTocRule:104: --><div style="margin-left: 2em;"><a href="#Further Discussion-Alternate enharmonics">Alternate enharmonics</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:104 --><!-- ws:start:WikiTextTocRule:105: --><div style="margin-left: 2em;"><a href="#Further Discussion-Alternate keyspans and stepspans">Alternate keyspans and stepspans</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:105 --><!-- ws:start:WikiTextTocRule:106: --><div style="margin-left: 2em;"><a href="#Further Discussion-Chord names and scale names">Chord names and scale names</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:106 --><!-- ws:start:WikiTextTocRule:107: --><div style="margin-left: 2em;"><a href="#toc14"> </a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:107 --><!-- ws:start:WikiTextTocRule:108: --><div style="margin-left: 2em;"><a href="#Further Discussion-MOS scales">MOS scales</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:108 --><!-- ws:start:WikiTextTocRule:109: --><div style="margin-left: 2em;"><a href="#Further Discussion-Combining pergens">Combining pergens</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:109 --><!-- ws:start:WikiTextTocRule:110: --><div style="margin-left: 2em;"><a href="#Further Discussion-Pergens and EDOs">Pergens and EDOs</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:110 --><!-- ws:start:WikiTextTocRule:111: --><div style="margin-left: 2em;"><a href="#Further Discussion-Supplemental materials">Supplemental materials</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:111 --><!-- ws:start:WikiTextTocRule:112: --><div style="margin-left: 2em;"><a href="#Further Discussion-Misc notes">Misc notes</a></div> | ||
<!-- ws:end:WikiTextTocRule:112 --><!-- ws:start:WikiTextTocRule:113: --></div> | |||
<!-- ws:end:WikiTextTocRule:113 --><!-- ws:start:WikiTextHeadingRule:54:&lt;h1&gt; --><h1 id="toc1"><a name="Definition"></a><!-- ws:end:WikiTextHeadingRule:54 --><u><strong>Definition</strong></u></h1> | |||
<br /> | <br /> | ||
<br /> | <br /> | ||
Line 2,411: | Line 2,459: | ||
<br /> | <br /> | ||
For example, small triple amber tempers out (12,-1,0,0,-3) from 2.3.11, making a third-11th pergen. The generator is 11/8. If 11/8 is notated as an ^4, the enharmonic is v<span style="vertical-align: super;">3</span>M2, but if 11/8 is notated as a vA4, the enharmonic is ^<span style="vertical-align: super;">3</span>dd2.<br /> | For example, small triple amber tempers out (12,-1,0,0,-3) from 2.3.11, making a third-11th pergen. The generator is 11/8. If 11/8 is notated as an ^4, the enharmonic is v<span style="vertical-align: super;">3</span>M2, but if 11/8 is notated as a vA4, the enharmonic is ^<span style="vertical-align: super;">3</span>dd2.<br /> | ||
<br /> | |||
Sometimes the temperament implies an enharmonic that isn't even a 2nd. For example, liese (2.3.5.7 with 81/80 and 1029/1000) is (P8, P11/3), with G = 7/5 = d5. E = 3·d5 - P11 = descending dd3.<br /> | |||
<br /> | <br /> | ||
This is all for single-comma temperaments. Each comma of a multiple-comma temperament also implies an enharmonic, and they may conflict. True double pergens, which are always multi-comma, have multiple notations. For example, the half-everything pergen has 3 possible notations, all equally valid. Even single-split pergens can have multiple commas that imply different enharmonics.<br /> | This is all for single-comma temperaments. Each comma of a multiple-comma temperament also implies an enharmonic, and they may conflict. True double pergens, which are always multi-comma, have multiple notations. For example, the half-everything pergen has 3 possible notations, all equally valid. Even single-split pergens can have multiple commas that imply different enharmonics.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:76:&lt;h2&gt; --><h2 id="toc12"><a name="Further Discussion-Alternate keyspans and stepspans"></a><!-- ws:end:WikiTextHeadingRule:76 -->Alternate keyspans and stepspans</h2> | <!-- ws:start:WikiTextHeadingRule:76:&lt;h2&gt; --><h2 id="toc12"><a name="Further Discussion-Alternate keyspans and stepspans"></a><!-- ws:end:WikiTextHeadingRule:76 -->Alternate keyspans and stepspans</h2> | ||
Line 2,430: | Line 2,478: | ||
A different temperament may result in the same pergen with the same enharmonic, but may still produce a different name for the same chord. For example, injera (2.3.5.7 with 81/80 and 50/49, or rryy&amp;gT) is also half-8ve. However, the tipping point for the d2 enharmonic is at 700¢, and while pajara favors a fifth wider than that, injera favors a fifth narrower than that. Hence ups and downs are exchanged, and E = vvd2, and P = ^A4 = vd5. The mapping is [(2 2 0 1) (0 1 4 4)] = [(2 0) (2 1) (0 4) (1 4)]. Because the square mapping (the first two columns) are the same, the pergen is the same. Because the other columns are different, the higher primes are mapped differently. 5/4 = M3 and 7/4 = M3 + vd5 = vm7, and 4:5:6:7 = C E G Bbv = C,v7.<br /> | A different temperament may result in the same pergen with the same enharmonic, but may still produce a different name for the same chord. For example, injera (2.3.5.7 with 81/80 and 50/49, or rryy&amp;gT) is also half-8ve. However, the tipping point for the d2 enharmonic is at 700¢, and while pajara favors a fifth wider than that, injera favors a fifth narrower than that. Hence ups and downs are exchanged, and E = vvd2, and P = ^A4 = vd5. The mapping is [(2 2 0 1) (0 1 4 4)] = [(2 0) (2 1) (0 4) (1 4)]. Because the square mapping (the first two columns) are the same, the pergen is the same. Because the other columns are different, the higher primes are mapped differently. 5/4 = M3 and 7/4 = M3 + vd5 = vm7, and 4:5:6:7 = C E G Bbv = C,v7.<br /> | ||
<br /> | <br /> | ||
MOS scales tend to correspond to just one or two pergens. The table below shows the pergen that best corresponds to each MOS scale, as well as any others that could generate the scale. | Scales can be named similar to Meantone[7], as (P8, P5) [7] = unsplit heptatonic, or (P8, P5/2) [7] = half-fifth pentatonic, etc. The number of notes in the scale tend to be a multiple of m, so that half-octave pergens have scales with an even number of notes.<br /> | ||
<!-- ws:start:WikiTextHeadingRule:80:&lt;h2&gt; --><h2 id="toc14"><!-- ws:end:WikiTextHeadingRule:80 --> </h2> | |||
<!-- ws:start:WikiTextHeadingRule:82:&lt;h2&gt; --><h2 id="toc15"><a name="Further Discussion-MOS scales"></a><!-- ws:end:WikiTextHeadingRule:82 -->MOS scales</h2> | |||
<br /> | |||
MOS scales tend to correspond to just one or two pergens. The table below shows the pergen that best corresponds to each MOS scale, as well as any others that could also generate the scale. The best pergen is the one that makes a reasonable L/s ratio. A ratio of 3 or more makes a scale that's too lopsided.<br /> | |||
<br /> | <br /> | ||
Line 2,904: | Line 2,956: | ||
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.<br /> | Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | A pergen<br /> | ||
<br /> | |||
<table class="wiki_table"> | |||
<tr> | |||
<th>pergen<br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th>MOS scales 5-12<br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P5)<br /> | |||
</td> | |||
<td style="text-align: center;">unsplit<br /> | |||
</td> | |||
<td style="text-align: center;">5, 7, 12, 17/19<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<th>halves<br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, P5)<br /> | |||
</td> | |||
<td style="text-align: center;">half-8ve<br /> | |||
</td> | |||
<td style="text-align: center;">4, 6, 8, 10, 12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P4/2)<br /> | |||
</td> | |||
<td style="text-align: center;">half-4th<br /> | |||
</td> | |||
<td style="text-align: center;">4, 5, 9, 14, 19<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P5/2)<br /> | |||
</td> | |||
<td style="text-align: center;">half-5th<br /> | |||
</td> | |||
<td style="text-align: center;">7, 10, 17<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, P4/2)<br /> | |||
</td> | |||
<td style="text-align: center;">half-everything<br /> | |||
</td> | |||
<td style="text-align: center;">4, 6, 10, 14, 24<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<th>thirds<br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P5)<br /> | |||
</td> | |||
<td style="text-align: center;">third-8ve<br /> | |||
</td> | |||
<td style="text-align: center;">6, 9, 12, 15/21<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P4/3)<br /> | |||
</td> | |||
<td style="text-align: center;">third-4th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P5/3)<br /> | |||
</td> | |||
<td style="text-align: center;">third-5th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P11/3)<br /> | |||
</td> | |||
<td style="text-align: center;">third-11th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P4/2)<br /> | |||
</td> | |||
<td style="text-align: center;">third-8ve, half-4th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P5/2)<br /> | |||
</td> | |||
<td style="text-align: center;">third-8ve, half-5th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, P4/3)<br /> | |||
</td> | |||
<td style="text-align: center;">half-8ve, third-4th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, P5/3)<br /> | |||
</td> | |||
<td style="text-align: center;">half-8ve, third-5th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, P11/3)<br /> | |||
</td> | |||
<td style="text-align: center;">half-8ve, third-11th<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P4/3)<br /> | |||
</td> | |||
<td style="text-align: center;">third-everything<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<th>quarters<br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/4, P5)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P4/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P5/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P11/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8, P12/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/4, P4/2)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, M2/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, P4/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/2, P5/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/4, P4/3)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/4, P5/3)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/4, P11/3)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P4/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P5/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P11/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/3, P12/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">(P8/4, P4/4)<br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
<td style="text-align: center;"><br /> | |||
</td> | |||
</tr> | |||
</table> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:84:&lt;h2&gt; --><h2 id="toc16"><a name="Further Discussion-Combining pergens"></a><!-- ws:end:WikiTextHeadingRule:84 -->Combining pergens</h2> | |||
<br /> | <br /> | ||
Tempering out 250/243 creates third-4th, and 49/48 creates half-4th, and tempering out both commas creates sixth-4th. Therefore (P8, P4/3) + (P8, P4/2) = (P8, P4/6).<br /> | Tempering out 250/243 creates third-4th, and 49/48 creates half-4th, and tempering out both commas creates sixth-4th. Therefore (P8, P4/3) + (P8, P4/2) = (P8, P4/6).<br /> | ||
Line 2,912: | Line 3,263: | ||
However, (P8/2, M2/4) + (P8, P4/2) = (P8/4, P4/2), so the sum isn't always obvious. Further study is needed.<br /> | However, (P8/2, M2/4) + (P8, P4/2) = (P8/4, P4/2), so the sum isn't always obvious. Further study is needed.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:86:&lt;h2&gt; --><h2 id="toc17"><a name="Further Discussion-Pergens and EDOs"></a><!-- ws:end:WikiTextHeadingRule:86 -->Pergens and EDOs</h2> | ||
<br /> | <br /> | ||
Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.<br /> | Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.<br /> | ||
Line 3,220: | Line 3,571: | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:88:&lt;h2&gt; --><h2 id="toc18"><a name="Further Discussion-Supplemental materials"></a><!-- ws:end:WikiTextHeadingRule:88 -->Supplemental materials</h2> | ||
<br /> | <br /> | ||
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block.<br /> | This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block.<br /> | ||
<!-- ws:start:WikiTextUrlRule: | <!-- ws:start:WikiTextUrlRule:4378:http://www.tallkite.com/misc_files/pergens.pdf --><a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow">http://www.tallkite.com/misc_files/pergens.pdf</a><!-- ws:end:WikiTextUrlRule:4378 --><br /> | ||
<br /> | <br /> | ||
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.<br /> | Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.<br /> | ||
<!-- ws:start:WikiTextUrlRule: | <!-- ws:start:WikiTextUrlRule:4379:http://www.tallkite.com/misc_files/alt-pergensLister.zip --><a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergensLister.zip" rel="nofollow">http://www.tallkite.com/misc_files/alt-pergensLister.zip</a><!-- ws:end:WikiTextUrlRule:4379 --><br /> | ||
<br /> | <br /> | ||
Screenshot of the first 38 pergens:<br /> | Screenshot of the first 38 pergens:<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:2534:&lt;img src=&quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 460px; width: 704px;&quot; /&gt; --><img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /><!-- ws:end:WikiTextLocalImageRule:2534 --><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:90:&lt;h2&gt; --><h2 id="toc19"><a name="Further Discussion-Misc notes"></a><!-- ws:end:WikiTextHeadingRule:90 -->Misc notes</h2> | ||
<br /> | <br /> | ||
Given:<br /> | Given:<br /> |