Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 625030713 - Original comment: **
Wikispaces>TallKite
**Imported revision 625062379 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-18 05:56:31 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-18 15:22:52 UTC</tt>.<br>
: The original revision id was <tt>625030713</tt>.<br>
: The original revision id was <tt>625062379</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 542: Line 542:
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.


We can also examine which MOS scales are generated by a specific pergen. This depends on the size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5.
We can also examine which MOS scales are generated by a specific pergen. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5.


||||~ pergen ||||~ MOS scales 5-12 ||~  ||~  ||
||||~ pergen ||~ MOS scales ||~ from 5 to 12 ||~  ||~  ||
||= (P8, P5) ||= unsplit ||= 5 = 2L 3s ||= 7 = 5L 2s ||= 12 = 7L 5s __**or**__ 5L 7s ||=  ||
||= (P8, P5) ||= unsplit ||= 5 = 2L 3s ||= 7 = 5L 2s ||= 12 = 7L 5s __**or**__ 5L 7s ||=  ||
||~ halves ||~  ||~  ||~  ||~  ||~  ||
||~ halves ||~  ||~  ||~  ||~  ||~  ||
||= (P8/2, P5) ||= half-8ve ||= 6 = 2L 4s ||= 8 = 2L 6s ||= 10 = 2L 8s ||= 12 = 2L 10s * ||
||= (P8/2, P5) ||= half-8ve ||= 6 = 2L 4s ||= 8 = 2L 6s ||= 10 = 2L 8s ||= 12 = 2L 10s __**or**__ 10L 2s ||
||= (P8, P4/2) ||= half-4th ||= 5 = 4L 1s ||= 9 = 5L 4s ||=  ||=  ||
||= (P8, P4/2) ||= half-4th ||= 5 = 4L 1s ||= 9 = 5L 4s ||=  ||=  ||
||= (P8, P5/2) ||= half-5th ||= 7 = 3L 4s ||= 10 = 7L 3s ||=  ||=  ||
||= (P8, P5/2) ||= half-5th ||= 7 = 3L 4s ||= 10 = 7L 3s ||=  ||=  ||
||= (P8/2, P4/2) ||= half-everything ||= 6 = 4L 2s ||= 10 = 4L 6s ||=  ||=  ||
||= (P8/2, P4/2) ||= half-everything ||= 6 = 4L 2s ||= 10 = 4L 6s ||=  ||=  ||
||~ thirds ||~  ||~  ||~  ||~  ||~  ||
||~ thirds ||~  ||~  ||~  ||~  ||~  ||
||= (P8/3, P5) ||= third-8ve ||= 6 = 3L 3s ||= 9 = 3L 6s ||= 12 = 3L 9s * ||=  ||
||= (P8/3, P5) ||= third-8ve ||= 6 = 3L 3s ||= 9 = 3L 6s ||= 12 = 3L 9s __**or**__ 9L 3s ||=  ||
||= (P8, P4/3) ||= third-4th ||= 5 = 1L 4s ||= 6 = 1L 5s ||= 7 = 1L 6s ||= 8 = 7L 1s ||
||= (P8, P4/3) ||= third-4th ||= 5 = 1L 4s ||= 6 = 1L 5s ||= 7 = 1L 6s ||= 8 = 7L 1s ||
||= (P8, P5/3) ||= third-5th ||= 5 = 1L 4s ||= 6 = 5L 1s ||= 11 = 5L 6s ||=  ||
||= (P8, P5/3) ||= third-5th ||= 5 = 1L 4s ||= 6 = 5L 1s ||= 11 = 5L 6s ||=  ||
||= (P8, P11/3) ||= third-11th ||= 5 = 2L 3s ||= 7 = 2L 5s ||= 9 = 2L 7s ||= 11 = 2L 9s ||
||= (P8, P11/3) ||= third-11th ||= 5 = 2L 3s ||= 7 = 2L 5s ||= 9 = 2L 7s ||= 11 = 2L 9s ||
||= (P8/3, P4/2) ||= third-8ve, half-4th ||=   ||=   ||=  ||=  ||
||= (P8/3, P4/2) ||= third-8ve, half-4th ||= 6 = 3L 3s ||= 9 = 6L 3s ||=  ||=  ||
||= (P8/3, P5/2) ||= third-8ve, half-5th ||=   ||=   ||=   ||=  ||
||= (P8/3, P5/2) ||= third-8ve, half-5th ||= 6 = 3L 3s ||= 9 = 3L 6s ||= 12 = 3L 9s ||=  ||
||= (P8/2, P4/3) ||= half-8ve, third-4th ||=   ||=   ||=  ||=  ||
||= (P8/2, P4/3) ||= half-8ve, third-4th ||= 6 = 2L 4s ||= 8 = 6L 2s ||=  ||=  ||
||= (P8/2, P5/3) ||= half-8ve, third-5th ||=   ||=   ||=  ||=  ||
||= (P8/2, P5/3) ||= half-8ve, third-5th ||= 6 = 4L 2s ||= 10 = 6L 4s ||=  ||=  ||
||= (P8/2, P11/3) ||= half-8ve, third-11th ||=   ||=   ||=   ||=   ||
||= (P8/2, P11/3) ||= half-8ve, third-11th ||= 6 = 2L 4s ||= 8 = 2L 6s ||= 10 = 2L 8s ||= 12 = 2L 10s ||
||= (P8/3, P4/3) ||= third-everything ||=   ||=   ||=  ||=  ||
||= (P8/3, P4/3) ||= third-everything ||= 6 = 3L 3s ||= 9 = 6L 3s ||=  ||=  ||
||~ quarters ||~  ||~  ||~  ||~  ||~  ||
||~ quarters ||~  ||~  ||~  ||~  ||~  ||
||= (P8/4, P5) ||=  ||=  ||=  ||=  ||=  ||
||= (P8/4, P5) ||=  ||=  ||=  ||=  ||=  ||
Line 2,956: Line 2,956:
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.&lt;br /&gt;
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
We can also examine which MOS scales are generated by a specific pergen. This depends on the size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5.&lt;br /&gt;
We can also examine which MOS scales are generated by a specific pergen. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;


Line 2,964: Line 2,964:
         &lt;th colspan="2"&gt;pergen&lt;br /&gt;
         &lt;th colspan="2"&gt;pergen&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th colspan="2"&gt;MOS scales 5-12&lt;br /&gt;
         &lt;th&gt;MOS scales&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;from 5 to 12&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;&lt;br /&gt;
Line 3,010: Line 3,012:
         &lt;td style="text-align: center;"&gt;10 = 2L 8s&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;10 = 2L 8s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;12 = 2L 10s *&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12 = 2L 10s &lt;u&gt;&lt;strong&gt;or&lt;/strong&gt;&lt;/u&gt; 10L 2s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 3,078: Line 3,080:
         &lt;td style="text-align: center;"&gt;9 = 3L 6s&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9 = 3L 6s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;12 = 3L 9s *&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12 = 3L 9s &lt;u&gt;&lt;strong&gt;or&lt;/strong&gt;&lt;/u&gt; 9L 3s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 3,130: Line 3,132:
         &lt;td style="text-align: center;"&gt;third-8ve, half-4th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;third-8ve, half-4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6 = 3L 3s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9 = 6L 3s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 3,144: Line 3,146:
         &lt;td style="text-align: center;"&gt;third-8ve, half-5th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;third-8ve, half-5th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6 = 3L 3s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9 = 3L 6s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12 = 3L 9s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 3,158: Line 3,160:
         &lt;td style="text-align: center;"&gt;half-8ve, third-4th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve, third-4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6 = 2L 4s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8 = 6L 2s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 3,172: Line 3,174:
         &lt;td style="text-align: center;"&gt;half-8ve, third-5th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve, third-5th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6 = 4L 2s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;10 = 6L 4s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 3,186: Line 3,188:
         &lt;td style="text-align: center;"&gt;half-8ve, third-11th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve, third-11th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6 = 2L 4s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8 = 2L 6s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;10 = 2L 8s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12 = 2L 10s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 3,200: Line 3,202:
         &lt;td style="text-align: center;"&gt;third-everything&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;third-everything&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6 = 3L 3s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9 = 6L 3s&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 3,786: Line 3,788:
  &lt;br /&gt;
  &lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block.&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:4696:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:4696 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:4699:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:4699 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:4697:http://www.tallkite.com/misc_files/alt-pergensLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergensLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergensLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:4697 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:4700:http://www.tallkite.com/misc_files/alt-pergensLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergensLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergensLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:4700 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Screenshot of the first 38 pergens:&lt;br /&gt;
Screenshot of the first 38 pergens:&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:2746:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:2746 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:2748:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:2748 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:90:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Further Discussion-Misc notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:90 --&gt;Misc notes&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:90:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Further Discussion-Misc notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:90 --&gt;Misc notes&lt;/h2&gt;