Pepper ambiguity: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 624694375 - Original comment: **
 
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Given an [[EDO|edo]] N and a positive rational number q, we may define the ''ambiguity'' ambig(N, q) of q in N edo by first computing u = N log2(q), and from there v = abs(u - round(u)). Then ambig(N, q) = v/(1-v). Since v is a measure of the relative error of q in is best approximation in N edo, and 1-v of its second best approximation, ambig(N, q) is the ratio of the best approximation to the second best. If we used [[Relative_cent|relative cent]]s instead to measure relative error, we would get the same result.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2018-01-10 14:53:50 UTC</tt>.<br>
: The original revision id was <tt>624694375</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given an [[edo]] N and a positive rational number q, we may define the //ambiguity// ambig(N, q) of q in N edo by first computing u = N log2(q), and from there v = abs(u - round(u)). Then ambig(N, q) = v/(1-v). Since v is a measure of the relative error of q in is best approximation in N edo, and 1-v of its second best approximation, ambig(N, q) is the ratio of the best approximation to the second best. If we used [[relative cent]]s instead to measure relative error, we would get the same result.


Given a finite set s of positive rational numbers, the maximum value of ambig(N, q) for all q∈s is the //Pepper ambiguity// of N with respect to s. If the set s is the L odd limit [[tonality diamond]], this is the L-limit Pepper ambiguity of N. Lists of N of decreasing Pepper ambiguity can be found on the On-Line Encyclopedia of Integer Sequences, https://oeis.org/A117554, https://oeis.org/A117555, https://oeis.org/A117556, https://oeis.org/A117557, https://oeis.org/A117558 and https://oeis.org/A117559. We may also define the mean ambiguity for N with respect to s by taking the mean of ambig(N, q) for all members q of s.
Given a finite set s of positive rational numbers, the maximum value of ambig(N, q) for all q∈s is the ''Pepper ambiguity'' of N with respect to s. If the set s is the L odd limit [[Tonality_diamond|tonality diamond]], this is the L-limit Pepper ambiguity of N. Lists of N of decreasing Pepper ambiguity can be found on the On-Line Encyclopedia of Integer Sequences, [https://oeis.org/A117554 https://oeis.org/A117554], [https://oeis.org/A117555 https://oeis.org/A117555], [https://oeis.org/A117556 https://oeis.org/A117556], [https://oeis.org/A117557 https://oeis.org/A117557], [https://oeis.org/A117558 https://oeis.org/A117558] and [https://oeis.org/A117559 https://oeis.org/A117559]. We may also define the mean ambiguity for N with respect to s by taking the mean of ambig(N, q) for all members q of s.
</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Pepper ambiguity&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Given an &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt; N and a positive rational number q, we may define the &lt;em&gt;ambiguity&lt;/em&gt; ambig(N, q) of q in N edo by first computing u = N log2(q), and from there v = abs(u - round(u)). Then ambig(N, q) = v/(1-v). Since v is a measure of the relative error of q in is best approximation in N edo, and 1-v of its second best approximation, ambig(N, q) is the ratio of the best approximation to the second best. If we used &lt;a class="wiki_link" href="/relative%20cent"&gt;relative cent&lt;/a&gt;s instead to measure relative error, we would get the same result.&lt;br /&gt;
&lt;br /&gt;
Given a finite set s of positive rational numbers, the maximum value of ambig(N, q) for all q∈s is the &lt;em&gt;Pepper ambiguity&lt;/em&gt; of N with respect to s. If the set s is the L odd limit &lt;a class="wiki_link" href="/tonality%20diamond"&gt;tonality diamond&lt;/a&gt;, this is the L-limit Pepper ambiguity of N. Lists of N of decreasing Pepper ambiguity can be found on the On-Line Encyclopedia of Integer Sequences, &lt;!-- ws:start:WikiTextUrlRule:5:https://oeis.org/A117554 --&gt;&lt;a class="wiki_link_ext" href="https://oeis.org/A117554" rel="nofollow"&gt;https://oeis.org/A117554&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5 --&gt;, &lt;!-- ws:start:WikiTextUrlRule:6:https://oeis.org/A117555 --&gt;&lt;a class="wiki_link_ext" href="https://oeis.org/A117555" rel="nofollow"&gt;https://oeis.org/A117555&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:6 --&gt;, &lt;!-- ws:start:WikiTextUrlRule:7:https://oeis.org/A117556 --&gt;&lt;a class="wiki_link_ext" href="https://oeis.org/A117556" rel="nofollow"&gt;https://oeis.org/A117556&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7 --&gt;, &lt;!-- ws:start:WikiTextUrlRule:8:https://oeis.org/A117557 --&gt;&lt;a class="wiki_link_ext" href="https://oeis.org/A117557" rel="nofollow"&gt;https://oeis.org/A117557&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8 --&gt;, &lt;!-- ws:start:WikiTextUrlRule:9:https://oeis.org/A117558 --&gt;&lt;a class="wiki_link_ext" href="https://oeis.org/A117558" rel="nofollow"&gt;https://oeis.org/A117558&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:9 --&gt; and &lt;!-- ws:start:WikiTextUrlRule:10:https://oeis.org/A117559 --&gt;&lt;a class="wiki_link_ext" href="https://oeis.org/A117559" rel="nofollow"&gt;https://oeis.org/A117559&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:10 --&gt;. We may also define the mean ambiguity for N with respect to s by taking the mean of ambig(N, q) for all members q of s.&lt;/body&gt;&lt;/html&gt;</pre></div>