Orwell: Difference between revisions

Wikispaces>Gedankenwelt
**Imported revision 536941202 - Original comment: **
Wikispaces>hstraub
**Imported revision 543648446 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Gedankenwelt|Gedankenwelt]] and made on <tt>2015-01-11 20:41:58 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2015-03-10 15:52:38 UTC</tt>.<br>
: The original revision id was <tt>536941202</tt>.<br>
: The original revision id was <tt>543648446</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">&lt;span style="text-align: right;
display: block;"&gt;Other languages: &lt;/span&gt;
[[toc|flat]]
=Properties=  
=Properties=  
[[Semicomma family#Seven%20limit%20children-Orwell|Orwell]] — so named because 19 steps of [[84edo]], or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The "perfect twelfth" 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the [[Semicomma family]]. Alternately, the "fifth harmonic" 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.
[[Semicomma family#Seven%20limit%20children-Orwell|Orwell]] — so named because 19 steps of [[84edo]], or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The "perfect twelfth" 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the [[Semicomma family]]. Alternately, the "fifth harmonic" 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.
Line 141: Line 143:
See: [[Orwell on an Isomorphic Keyboard]]</pre></div>
See: [[Orwell on an Isomorphic Keyboard]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Orwell&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:24:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;a href="#Properties"&gt;Properties&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt; | &lt;a href="#Interval chain"&gt;Interval chain&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt; | &lt;a href="#Spectrum of Orwell Tunings by Eigenmonzos"&gt;Spectrum of Orwell Tunings by Eigenmonzos&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt; | &lt;a href="#MOSes"&gt;MOSes&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt; | &lt;a href="#Planar temperaments"&gt;Planar temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt; | &lt;a href="#Chords of orwell"&gt;Chords of orwell&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt; | &lt;a href="#MOS transversals"&gt;MOS transversals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt; | &lt;a href="#Keyboards"&gt;Keyboards&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt; | &lt;a href="#toc11"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Orwell&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="text-align: right;
display: block;"&gt;Other languages: &lt;/span&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextTocRule:24:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;a href="#Properties"&gt;Properties&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt; | &lt;a href="#Interval chain"&gt;Interval chain&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt; | &lt;a href="#Spectrum of Orwell Tunings by Eigenmonzos"&gt;Spectrum of Orwell Tunings by Eigenmonzos&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt; | &lt;a href="#MOSes"&gt;MOSes&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt; | &lt;a href="#Planar temperaments"&gt;Planar temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt; | &lt;a href="#Chords of orwell"&gt;Chords of orwell&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt; | &lt;a href="#MOS transversals"&gt;MOS transversals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt; | &lt;a href="#Keyboards"&gt;Keyboards&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt; | &lt;a href="#toc11"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Properties"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Properties&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Properties"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Properties&lt;/h1&gt;
  &lt;a class="wiki_link" href="/Semicomma%20family#Seven%20limit%20children-Orwell"&gt;Orwell&lt;/a&gt; — so named because 19 steps of &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The &amp;quot;perfect twelfth&amp;quot; 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the &lt;a class="wiki_link" href="/Semicomma%20family"&gt;Semicomma family&lt;/a&gt;. Alternately, the &amp;quot;fifth harmonic&amp;quot; 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.&lt;br /&gt;
  &lt;a class="wiki_link" href="/Semicomma%20family#Seven%20limit%20children-Orwell"&gt;Orwell&lt;/a&gt; — so named because 19 steps of &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The &amp;quot;perfect twelfth&amp;quot; 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the &lt;a class="wiki_link" href="/Semicomma%20family"&gt;Semicomma family&lt;/a&gt;. Alternately, the &amp;quot;fifth harmonic&amp;quot; 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.&lt;br /&gt;