|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2> | | <span style="display: block; text-align: right;">Other languages: [[:de:Orwell Deutsch]]</span> |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | __FORCETOC__ |
| : This revision was by author [[User:MasonGreen1|MasonGreen1]] and made on <tt>2016-06-19 01:46:01 UTC</tt>.<br>
| | | |
| : The original revision id was <tt>585794451</tt>.<br>
| | =Properties= |
| : The revision comment was: <tt></tt><br>
| | [[Semicomma_family#Seven limit children-Orwell|Orwell]] — so named because 19 steps of [[84edo|84edo]], or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The "perfect twelfth" 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the [[Semicomma_family|Semicomma family]]. Alternately, the "fifth harmonic" 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7. |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html"><span style="display: block; text-align: right;">Other languages: [[xenharmonie/Orwell|Deutsch]]
| |
| </span>
| |
| [[toc|flat]]
| |
| =Properties= | |
| [[Semicomma family#Seven%20limit%20children-Orwell|Orwell]] — so named because 19 steps of [[84edo]], or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The "perfect twelfth" 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the [[Semicomma family]]. Alternately, the "fifth harmonic" 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7. | |
|
| |
|
| In the 11 limit, two generators are equated to 11/8 (meaning 99/98 is tempered out). This means that three stacked generators makes the [[orwell tetrad]] 1/1-7/6-11/8-8/5, a chord in which every interval is a (tempered) 11-limit consonance. Other such chords in orwell are the [[keenanismic chords|keenanismic tetrads]] and the [[swetismic chords]]. | | In the 11 limit, two generators are equated to 11/8 (meaning 99/98 is tempered out). This means that three stacked generators makes the [[orwell_tetrad|orwell tetrad]] 1/1-7/6-11/8-8/5, a chord in which every interval is a (tempered) 11-limit consonance. Other such chords in orwell are the [[keenanismic_chords|keenanismic tetrads]] and the [[swetismic_chords|swetismic chords]]. |
|
| |
|
| Compatible equal temperaments include [[22edo]], [[31edo]], [[53edo]], and [[84edo]]. Orwell is in better tune in lower limits than higher ones; the [[optimal patent val]] is [[296edo]] in the 5-limit, [[137edo]] in the 7-limit, and [[53edo]] in the 11-limit. It tempers out the semicomma in the 5-limit, and so belongs to the [[semicomma family]]. In the 7-limit it tempers out 225/224, 1728/1715, 2430/2401 and 6144/6125 in the 7-limit, and 99/98, 121/120, 176/175, 385/384 and 540/539 in the 11-limit. By adding 275/273 to the list of commas it can be extended to the 13-limit as [[Semicomma family#Orwell-13-limit|tridecimal orwell]], and by adding instead 66/65, [[Semicomma family#Winston|winston temperament]]. | | Compatible equal temperaments include [[22edo|22edo]], [[31edo|31edo]], [[53edo|53edo]], and [[84edo|84edo]]. Orwell is in better tune in lower limits than higher ones; the [[Optimal_patent_val|optimal patent val]] is [[296edo|296edo]] in the 5-limit, [[137edo|137edo]] in the 7-limit, and [[53edo|53edo]] in the 11-limit. It tempers out the semicomma in the 5-limit, and so belongs to the [[Semicomma_family|semicomma family]]. In the 7-limit it tempers out 225/224, 1728/1715, 2430/2401 and 6144/6125 in the 7-limit, and 99/98, 121/120, 176/175, 385/384 and 540/539 in the 11-limit. By adding 275/273 to the list of commas it can be extended to the 13-limit as [[Semicomma_family#Orwell-13-limit|tridecimal orwell]], and by adding instead 66/65, [[Semicomma_family#Winston|winston temperament]]. |
|
| |
|
| ===Watcher=== | | ===Watcher=== |
|
| |
|
| By switching the roles of the period and generator, we end up with a nonoctave temperament that is to orwell what [[angel]] and [[devadoot]] are to meantone and magic, respectively. There is an interesting MOS with 7 notes per period; if this is derived as a subset of [[84edt]] (which has 12 notes per period, and is almost identical to 53edo), the resulting MOS has the same structure as the 12edo diatonic scale, only compressed so that the period is ~272 cents rather than an octave! Thus, a piano keyboard for this MOS would look exactly the same as a typical keyboard, only what looks like an octave wouldn't be one anymore. This temperament could be called [[https://en.wikipedia.org/wiki/Watcher_(angel)|watcher]], a reference to a class of angels whose very name carries Orwellian connotations. The 12-limit otonality (1:2:3:4:5:6:7:8:9:10:11:12) and utonality both have complexity 4. If we consider these to be the fundamental consonances, then using the 7-note-per period MOS, there are exactly 3 of each type per period, which again is analogous to the diatonic scale. While angel and devadoot don't perform well past the 10-limit, watcher handles the 12-limit with ease. Straight-fretted watcher guitars could be built as long as the strings were all tuned to period-equivalent notes. | | By switching the roles of the period and generator, we end up with a nonoctave temperament that is to orwell what [[Angel|angel]] and [[devadoot|devadoot]] are to meantone and magic, respectively. There is an interesting MOS with 7 notes per period; if this is derived as a subset of [[84edt|84edt]] (which has 12 notes per period, and is almost identical to 53edo), the resulting MOS has the same structure as the 12edo diatonic scale, only compressed so that the period is ~272 cents rather than an octave! Thus, a piano keyboard for this MOS would look exactly the same as a typical keyboard, only what looks like an octave wouldn't be one anymore. This temperament could be called [https://en.wikipedia.org/wiki/Watcher_(angel) watcher], a reference to a class of angels whose very name carries Orwellian connotations. The 12-limit otonality (1:2:3:4:5:6:7:8:9:10:11:12) and utonality both have complexity 4. If we consider these to be the fundamental consonances, then using the 7-note-per period MOS, there are exactly 3 of each type per period, which again is analogous to the diatonic scale. While angel and devadoot don't perform well past the 10-limit, watcher handles the 12-limit with ease. Straight-fretted watcher guitars could be built as long as the strings were all tuned to period-equivalent notes. |
|
| |
|
| =Interval chain= | | =Interval chain= |
| ||~ Generators ||~ Cents* ||~ 11-limit ratios | | |
| (orwell mapping) ||~ 13-limit ratios | | {| class="wikitable" |
| (orwell mapping) ||~ 13-limit ratios | | |- |
| (winston mapping) ||~ 13-limit ratios | | ! | Generators |
| (blair mapping) || | | ! | Cents* |
| || 0 ||> 0.00 ||< 1/1 || || || || | | ! | 11-limit ratios |
| || 1 ||> 271.43 ||< 7/6 || || || 13/11, 15/13 || | | |
| || 2 ||> 542.85 ||< 11/8, 15/11 || || 18/13 || 35/26, 39/28 || | | (orwell mapping) |
| || 3 ||> 814.28 ||< 8/5 || || 21/13, 52/33 || 13/8 || | | ! | 13-limit ratios |
| || 4 ||> 1085.71 ||< 15/8, 28/15 || || 13/7 || 24/13 || | | |
| || 5 ||> 157.13 ||< 12/11, 11/10, 35/32 || || 13/12 || 14/13 || | | (orwell mapping) |
| || 6 ||> 428.56 ||< 14/11, 9/7, 32/25 || || || 13/10, 33/26 || | | ! | 13-limit ratios |
| || 7 ||> 699.98 ||< 3/2 || || 52/35 || || | | |
| || 8 ||> 971.41 ||< 7/4 || || 26/15 || || | | (winston mapping) |
| || 9 ||> 42.84 ||< 49/48, 36/35, 33/32 || 40/39 || 27/26 || 26/25 || | | ! | 13-limit ratios |
| || 10 ||> 314.26 ||< 6/5 || || 13/11 || 39/32 || | | |
| || 11 ||> 585.69 ||< 7/5 || || 39/28 || 18/13 || | | (blair mapping) |
| || 12 ||> 857.12 ||< 18/11 || 64/39 || 13/8 || 21/13 || | | |- |
| || 13 ||> 1128.54 ||< 21/11, 27/14, 48/25 || 25/13 || || 39/20 || | | | | 0 |
| || 14 ||> 199.97 ||< 9/8, 28/25 || || || || | | | style="text-align:right;" | 0.00 |
| || 15 ||> 471.40 ||< 21/16 || || 13/10 || || | | | | 1/1 |
| || 16 ||> 742.82 ||< 49/32, 54/35 || 20/13 || || || | | | | |
| || 17 ||> 1014.25 ||< 9/5 || || || || | | | | |
| || 18 ||> 85.67 ||< 21/20 || || 26/25 || 27/26 || | | | | |
| || 19 ||> 357.10 ||< 27/22, 49/40 || 16/13 || 39/32 || || | | |- |
| || 20 ||> 628.52 || 36/25 || 56/39 || || || | | | | 1 |
| || 21 ||> 899.95 || 27/16, 42/25 || 22/13 || || || | | | style="text-align:right;" | 271.43 |
| || 22 ||> 1171.38 || 63/32 || || 39/20 || || | | | | 7/6 |
| | | | |
| | | | |
| | | | 13/11, 15/13 |
| | |- |
| | | | 2 |
| | | style="text-align:right;" | 542.85 |
| | | | 11/8, 15/11 |
| | | | |
| | | | 18/13 |
| | | | 35/26, 39/28 |
| | |- |
| | | | 3 |
| | | style="text-align:right;" | 814.28 |
| | | | 8/5 |
| | | | |
| | | | 21/13, 52/33 |
| | | | 13/8 |
| | |- |
| | | | 4 |
| | | style="text-align:right;" | 1085.71 |
| | | | 15/8, 28/15 |
| | | | |
| | | | 13/7 |
| | | | 24/13 |
| | |- |
| | | | 5 |
| | | style="text-align:right;" | 157.13 |
| | | | 12/11, 11/10, 35/32 |
| | | | |
| | | | 13/12 |
| | | | 14/13 |
| | |- |
| | | | 6 |
| | | style="text-align:right;" | 428.56 |
| | | | 14/11, 9/7, 32/25 |
| | | | |
| | | | |
| | | | 13/10, 33/26 |
| | |- |
| | | | 7 |
| | | style="text-align:right;" | 699.98 |
| | | | 3/2 |
| | | | |
| | | | 52/35 |
| | | | |
| | |- |
| | | | 8 |
| | | style="text-align:right;" | 971.41 |
| | | | 7/4 |
| | | | |
| | | | 26/15 |
| | | | |
| | |- |
| | | | 9 |
| | | style="text-align:right;" | 42.84 |
| | | | 49/48, 36/35, 33/32 |
| | | | 40/39 |
| | | | 27/26 |
| | | | 26/25 |
| | |- |
| | | | 10 |
| | | style="text-align:right;" | 314.26 |
| | | | 6/5 |
| | | | |
| | | | 13/11 |
| | | | 39/32 |
| | |- |
| | | | 11 |
| | | style="text-align:right;" | 585.69 |
| | | | 7/5 |
| | | | |
| | | | 39/28 |
| | | | 18/13 |
| | |- |
| | | | 12 |
| | | style="text-align:right;" | 857.12 |
| | | | 18/11 |
| | | | 64/39 |
| | | | 13/8 |
| | | | 21/13 |
| | |- |
| | | | 13 |
| | | style="text-align:right;" | 1128.54 |
| | | | 21/11, 27/14, 48/25 |
| | | | 25/13 |
| | | | |
| | | | 39/20 |
| | |- |
| | | | 14 |
| | | style="text-align:right;" | 199.97 |
| | | | 9/8, 28/25 |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 15 |
| | | style="text-align:right;" | 471.40 |
| | | | 21/16 |
| | | | |
| | | | 13/10 |
| | | | |
| | |- |
| | | | 16 |
| | | style="text-align:right;" | 742.82 |
| | | | 49/32, 54/35 |
| | | | 20/13 |
| | | | |
| | | | |
| | |- |
| | | | 17 |
| | | style="text-align:right;" | 1014.25 |
| | | | 9/5 |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 18 |
| | | style="text-align:right;" | 85.67 |
| | | | 21/20 |
| | | | |
| | | | 26/25 |
| | | | 27/26 |
| | |- |
| | | | 19 |
| | | style="text-align:right;" | 357.10 |
| | | | 27/22, 49/40 |
| | | | 16/13 |
| | | | 39/32 |
| | | | |
| | |- |
| | | | 20 |
| | | style="text-align:right;" | 628.52 |
| | | | 36/25 |
| | | | 56/39 |
| | | | |
| | | | |
| | |- |
| | | | 21 |
| | | style="text-align:right;" | 899.95 |
| | | | 27/16, 42/25 |
| | | | 22/13 |
| | | | |
| | | | |
| | |- |
| | | | 22 |
| | | style="text-align:right;" | 1171.38 |
| | | | 63/32 |
| | | | |
| | | | 39/20 |
| | | | |
| | |} |
| *in 11-limit POTE tuning | | *in 11-limit POTE tuning |
|
| |
|
| =Spectrum of Orwell Tunings by Eigenmonzos= | | =Spectrum of Orwell Tunings by Eigenmonzos= |
| ||~ Eigenmonzo ||~ Subminor Third || | | |
| || 7/6 || 266.871 || | | {| class="wikitable" |
| || 14/11 || 269.585 || | | |- |
| || 12/11 || 270.127 || | | ! | Eigenmonzo |
| || 11/9 || 271.049 || | | ! | Subminor Third |
| || 8/7 || 271.103 || | | |- |
| || 7/5 || 271.137 (7 and 11 limit minimx) || | | | | 7/6 |
| || 5/4 || 271.229 || | | | | 266.871 |
| || 6/5 || 271.564 (5 limit minimax) || | | |- |
| || 10/9 || 271.623 (9 limit minimax) || | | | | 14/11 |
| || 4/3 || 271.708 || | | | | 269.585 |
| || 9/7 || 272.514 || | | |- |
| || 11/10 || 273.001 || | | | | 12/11 |
| || 11/8 || 275.659 || | | | | 270.127 |
| [6 5/2] eigenmonzos: [[orwellwoo13]] [[orwellwoo22]] | | |- |
| | | | 11/9 |
| | | | 271.049 |
| | |- |
| | | | 8/7 |
| | | | 271.103 |
| | |- |
| | | | 7/5 |
| | | | 271.137 (7 and 11 limit minimx) |
| | |- |
| | | | 5/4 |
| | | | 271.229 |
| | |- |
| | | | 6/5 |
| | | | 271.564 (5 limit minimax) |
| | |- |
| | | | 10/9 |
| | | | 271.623 (9 limit minimax) |
| | |- |
| | | | 4/3 |
| | | | 271.708 |
| | |- |
| | | | 9/7 |
| | | | 272.514 |
| | |- |
| | | | 11/10 |
| | | | 273.001 |
| | |- |
| | | | 11/8 |
| | | | 275.659 |
| | |} |
| | [6 5/2] eigenmonzos: [[orwellwoo13|orwellwoo13]] [[orwellwoo22|orwellwoo22]] |
| | |
| | =MOSes= |
| | |
| | ==9-note (LsLsLsLss, proper)== |
| | |
| | {| class="wikitable" |
| | |- |
| | | | Small ("minor") interval |
| | | | 114.29 |
| | | | 228.59 |
| | | | 385.72 |
| | | | 500.02 |
| | | | 657.15 |
| | | | 771.44 |
| | | | 928.57 |
| | | | 1042.87 |
| | |- |
| | | | JI intervals represented |
| | | | 15/14~16/15 |
| | | | 8/7 |
| | | | 5/4 |
| | | | 4/3 |
| | | | 16/11 |
| | | | 14/9~11/7 |
| | | | 12/7 |
| | | | 11/6 |
| | |- |
| | | | Large ("major") interval |
| | | | 157.13 |
| | | | 271.43 |
| | | | 428.56 |
| | | | 542.85 |
| | | | 699.98 |
| | | | 814.28 |
| | | | 971.41 |
| | | | 1085.71 |
| | |- |
| | | | JI intervals represented |
| | | | 12/11~11/10 |
| | | | 7/6 |
| | | | 14/11~9/7 |
| | | | 11/8 |
| | | | 3/2 |
| | | | 8/5 |
| | | | 7/4 |
| | | | 15/8 |
| | |} |
| | |
| | ==13-note (LLLsLLsLLsLLs, improper)== |
|
| |
|
| =MOSes= | | {| class="wikitable" |
| ==9-note (LsLsLsLss, proper)==
| | |- |
| || Small ("minor") interval || 114.29 || 228.59 || 385.72 || 500.02 || 657.15 || 771.44 || 928.57 || 1042.87 ||
| | | | Small ("minor") interval |
| || JI intervals represented || 15/14~16/15 || 8/7 || 5/4 || 4/3 || 16/11 || 14/9~11/7 || 12/7 || 11/6 ||
| | | | 42.84 |
| || Large ("major") interval || 157.13 || 271.43 || 428.56 || 542.85 || 699.98 || 814.28 || 971.41 || 1085.71 ||
| | | | 157.13 |
| || JI intervals represented || 12/11~11/10 || 7/6 || 14/11~9/7 || 11/8 || 3/2 || 8/5 || 7/4 || 15/8 || | | | | 271.43 |
| ==13-note (LLLsLLsLLsLLs, improper)==
| | | | 314.26 |
| || Small ("minor") interval || 42.84 || 157.13 || 271.43 || 314.26 || 428.56 || 542.85 || 585.69 || 699.98 || 814.28 || 857 || 971.41 || 1085.71 || | | | | 428.56 |
| || JI intervals represented || || 12/11~11/10 || 7/6 || 6/5 || 14/11~9/7 || 11/8 || 7/5 || 3/2 || 8/5 || 18/11 || 7/4 || 15/8 || | | | | 542.85 |
| || Large ("major") interval || 114.29 || 228.59 || 342.88 || 385.72 || 500.02 || 614.31 || 657.15 || 771.44 || 885.74 || 928.57 || 1042.87 || 1157.16 || | | | | 585.69 |
| || JI intervals represented || 15/14~16/15 || 8/7 || 11/9 || 5/4 || 4/3 || 10/7 || 16/11 || 14/9~11/7 || 5/3 || 12/7 || 11/6 || || | | | | 699.98 |
| | | | 814.28 |
| | | | 857 |
| | | | 971.41 |
| | | | 1085.71 |
| | |- |
| | | | JI intervals represented |
| | | | |
| | | | 12/11~11/10 |
| | | | 7/6 |
| | | | 6/5 |
| | | | 14/11~9/7 |
| | | | 11/8 |
| | | | 7/5 |
| | | | 3/2 |
| | | | 8/5 |
| | | | 18/11 |
| | | | 7/4 |
| | | | 15/8 |
| | |- |
| | | | Large ("major") interval |
| | | | 114.29 |
| | | | 228.59 |
| | | | 342.88 |
| | | | 385.72 |
| | | | 500.02 |
| | | | 614.31 |
| | | | 657.15 |
| | | | 771.44 |
| | | | 885.74 |
| | | | 928.57 |
| | | | 1042.87 |
| | | | 1157.16 |
| | |- |
| | | | JI intervals represented |
| | | | 15/14~16/15 |
| | | | 8/7 |
| | | | 11/9 |
| | | | 5/4 |
| | | | 4/3 |
| | | | 10/7 |
| | | | 16/11 |
| | | | 14/9~11/7 |
| | | | 5/3 |
| | | | 12/7 |
| | | | 11/6 |
| | | | |
| | |} |
|
| |
|
| =Planar temperaments= | | =Planar temperaments= |
| Following is a list of rank three, or planar temperaments that are supported by orwell temperament. | | Following is a list of rank three, or planar temperaments that are supported by orwell temperament. |
| ||||~ Planar temperament ||||||||~ Among others, planar temperament is also supported by... || | | |
| ||~ 7-limit ||~ 11-limit | | {| class="wikitable" |
| extension ||~ 9tet ||~ 22tet ||~ 31tet ||~ 53tet || | | |- |
| || [[Marvel family|marvel]] || || negri, septimin, august, | | ! colspan="2" | Planar temperament |
| amavil, enneaportent || magic, pajara, wizard, porky || meantone, miracle, tritonic, | | ! colspan="4" | Among others, planar temperament is also supported by... |
| slender, würschmidt || garibaldi, catakleismic || | | |- |
| || || marvel || negri, septimin, enneaportent || magic, pajarous, wizard || meanpop, miracle, tritoni, slender || garibaldi, catakleismic || | | ! | 7-limit |
| || || minerva || negric, august, amavil || telepathy, pajara || meantone, revelation, würschmidt || cataclysmic || | | ! | 11-limit |
| || || artemis* || wilsec || divination, hemipaj, porky || migration, oracle, tritonic || || | | |
| || [[Porwell family|hewuermity]] || || triforce, armodue, | | extension |
| twothirdtonic || porcupine, astrology, shrutar, | | ! | 9tet |
| hendecatonic, septisuperfourth || hemiwürschmidt, valentine, | | ! | 22tet |
| mohajira, grendel || amity, hemischis, | | ! | 31tet |
| hemikleismic || | | ! | 53tet |
| || || zeus || triforce, armodue, | | |- |
| twothirdtonic || porcupine, astrology, shrutar, | | | | [[Marvel_family|marvel]] |
| hendecatonic || hemiwur, valentine, mohajira || hitchcock, | | | | |
| hemikleismic || | | | | negri, septimin, august, |
| || || jupiter || || septisuperfourth || hemiwürschmidt, grendel || amity, hemischis || | | |
| || [[Orwellismic family|orwellian]] || || beep, secund, infraorwell, | | amavil, enneaportent |
| niner || superpyth, doublewide, | | | | magic, pajara, wizard, porky |
| echidna || myna, mothra, sentinel, | | | | meantone, miracle, tritonic, |
| semisept || quartonic, buzzard || | | |
| || || orwellian || pentoid, secund || suprapyth, doublewide || myno, mothra, sentinel || || | | slender, würschmidt |
| || || guanyin || infraorwell, niner || superpyth, fleetwood, echidna || myna, mosura, semisept || quartonic, buzzard || | | | | garibaldi, catakleismic |
| || [[Nuwell family|nuwell]] || || progression, superpelog || quasisuper, hedgehog || squares, nusecond || tricot, hamity || | | |- |
| || || big brother || progression, superpelog || quasisupra, hedgehog || squares, nusecond || tricot, hamity || | | | | |
| || [[Horwell family|horwell]] || || || bisupermajor, escaped, | | | | marvel |
| fifthplus || hemithirds, worschmidt, | | | | negri, septimin, enneaportent |
| tertiaseptal || countercata, pontiac || | | | | magic, pajarous, wizard |
| || || zelda || || bisupermajor, sensa || hemithirds, worschmidt, tertia || countercata || | | | | meanpop, miracle, tritoni, slender |
| | | | garibaldi, catakleismic |
| | |- |
| | | | |
| | | | minerva |
| | | | negric, august, amavil |
| | | | telepathy, pajara |
| | | | meantone, revelation, würschmidt |
| | | | cataclysmic |
| | |- |
| | | | |
| | | | artemis* |
| | | | wilsec |
| | | | divination, hemipaj, porky |
| | | | migration, oracle, tritonic |
| | | | |
| | |- |
| | | | [[Porwell_family|hewuermity]] |
| | | | |
| | | | triforce, armodue, |
| | |
| | twothirdtonic |
| | | | porcupine, astrology, shrutar, |
| | |
| | hendecatonic, septisuperfourth |
| | | | hemiwürschmidt, valentine, |
| | |
| | mohajira, grendel |
| | | | amity, hemischis, |
| | |
| | hemikleismic |
| | |- |
| | | | |
| | | | zeus |
| | | | triforce, armodue, |
| | |
| | twothirdtonic |
| | | | porcupine, astrology, shrutar, |
| | |
| | hendecatonic |
| | | | hemiwur, valentine, mohajira |
| | | | hitchcock, |
| | |
| | hemikleismic |
| | |- |
| | | | |
| | | | jupiter |
| | | | |
| | | | septisuperfourth |
| | | | hemiwürschmidt, grendel |
| | | | amity, hemischis |
| | |- |
| | | | [[Orwellismic_family|orwellian]] |
| | | | |
| | | | beep, secund, infraorwell, |
| | |
| | niner |
| | | | superpyth, doublewide, |
| | |
| | echidna |
| | | | myna, mothra, sentinel, |
| | |
| | semisept |
| | | | quartonic, buzzard |
| | |- |
| | | | |
| | | | orwellian |
| | | | pentoid, secund |
| | | | suprapyth, doublewide |
| | | | myno, mothra, sentinel |
| | | | |
| | |- |
| | | | |
| | | | guanyin |
| | | | infraorwell, niner |
| | | | superpyth, fleetwood, echidna |
| | | | myna, mosura, semisept |
| | | | quartonic, buzzard |
| | |- |
| | | | [[Nuwell_family|nuwell]] |
| | | | |
| | | | progression, superpelog |
| | | | quasisuper, hedgehog |
| | | | squares, nusecond |
| | | | tricot, hamity |
| | |- |
| | | | |
| | | | big brother |
| | | | progression, superpelog |
| | | | quasisupra, hedgehog |
| | | | squares, nusecond |
| | | | tricot, hamity |
| | |- |
| | | | [[Horwell_family|horwell]] |
| | | | |
| | | | |
| | | | bisupermajor, escaped, |
| | |
| | fifthplus |
| | | | hemithirds, worschmidt, |
| | |
| | tertiaseptal |
| | | | countercata, pontiac |
| | |- |
| | | | |
| | | | zelda |
| | | | |
| | | | bisupermajor, sensa |
| | | | hemithirds, worschmidt, tertia |
| | | | countercata |
| | |} |
| *weak extension (one or more generators from the parent temperament are split) | | *weak extension (one or more generators from the parent temperament are split) |
|
| |
|
| =[[Chords of orwell]]= | | =[[Chords_of_orwell|Chords of orwell]]= |
|
| |
|
| =MOS transversals= | | =MOS transversals= |
| [[orwell13trans]] | | [[orwell13trans|orwell13trans]] |
| [[orwell22trans]]
| |
| [[orwell31trans]]
| |
| [[orwell13trans57]]
| |
| [[orwell22trans57]]
| |
| [[orwell31trans57]]
| |
|
| |
|
| | [[orwell22trans|orwell22trans]] |
|
| |
|
| =Music=
| | [[orwell31trans|orwell31trans]] |
| [[http://www.archive.org/details/TrioInOrwell|Trio in Orwell]] [[http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3|play]] by [[Gene Ward Smith]] | |
| [[earwig]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/earwig.mp3|play]],
| |
| [[Technical Notes for Newbeams#Track%20notes:-Elf%20Dine%20on%20Ho%20Ho|Elf Dine on Ho Ho]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2004%20Hypnocloudsmack%201.mp3|play]],
| |
| [[Technical Notes for Newbeams#Track%20notes:-Spun|Spun]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3|play]],
| |
| [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3|one drop of rain]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3|play]],
| |
| [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+ivecomewithabucketofroses.mp3|i've come with a bucket of roses]] and [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+myownhouse.mp3|my own house]] by [[Andrew Heathwaite]]
| |
| [[http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3|Orwellian Cameras]] by [[Chris Vaisvil]]
| |
| [[http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3|Tunicata and Fugue]] by [[http://www.archive.org/details/TunicataAndFugue|Peter Kosmorsky]]
| |
| [[https://soundcloud.com/tarkan-grood/mountain-village-tarkangrood|Mountain Villiage]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3|play]] by Tarkan Grood
| |
| [[http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3|Swing in Orwell-9]]
| |
| [[http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Schizo_Blue__22_EDO_Orwell__first_mix_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3|Schizo Blue]] by [[https://soundcloud.com/lois-lancaster/schizo-blue-22-edo-orwell|Roncevaux (Löis Lancaster)]]
| |
| [[http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Sejaliscos_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3|Sejaliscos]] by [[https://soundcloud.com/lois-lancaster/sejaliscos|Roncevaux]]
| |
|
| |
|
| =Keyboards=
| | [[orwell13trans57|orwell13trans57]] |
| If only there were a way to make these interactive, that would be pretty nifty.
| | |
| [[image:Orwell_13.png width="1023" height="292"]] | | [[orwell22trans57|orwell22trans57]] |
| =[[image:Orwell_22.png width="1023" height="292"]]=
| | |
| [[image:orwell13_axis49.png]]
| | [[orwell31trans57|orwell31trans57]] |
| See: [[Orwell on an Isomorphic Keyboard]]</pre></div>
| | |
| <h4>Original HTML content:</h4>
| | =Music= |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Orwell</title></head><body><span style="display: block; text-align: right;">Other languages: <a class="wiki_link" href="http://xenharmonie.wikispaces.com/Orwell">Deutsch</a><br />
| | [http://www.archive.org/details/TrioInOrwell Trio in Orwell] [http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3 play] by [[Gene_Ward_Smith|Gene Ward Smith]] |
| </span><br />
| | |
| <!-- ws:start:WikiTextTocRule:26:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><a href="#Properties">Properties</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --> | <a href="#Interval chain">Interval chain</a><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --> | <a href="#Spectrum of Orwell Tunings by Eigenmonzos">Spectrum of Orwell Tunings by Eigenmonzos</a><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --> | <a href="#MOSes">MOSes</a><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --> | <a href="#Planar temperaments">Planar temperaments</a><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --> | <a href="#Chords of orwell">Chords of orwell</a><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --> | <a href="#MOS transversals">MOS transversals</a><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:37 --><!-- ws:start:WikiTextTocRule:38: --> | <a href="#Keyboards">Keyboards</a><!-- ws:end:WikiTextTocRule:38 --><!-- ws:start:WikiTextTocRule:39: --> | <a href="#toc12"></a><!-- ws:end:WikiTextTocRule:39 --><!-- ws:start:WikiTextTocRule:40: -->
| | [[earwig|earwig]], [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/earwig.mp3 play], |
| <!-- ws:end:WikiTextTocRule:40 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Properties"></a><!-- ws:end:WikiTextHeadingRule:0 -->Properties</h1>
| | |
| <a class="wiki_link" href="/Semicomma%20family#Seven%20limit%20children-Orwell">Orwell</a> — so named because 19 steps of <a class="wiki_link" href="/84edo">84edo</a>, or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The &quot;perfect twelfth&quot; 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the <a class="wiki_link" href="/Semicomma%20family">Semicomma family</a>. Alternately, the &quot;fifth harmonic&quot; 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.<br />
| | [[Technical_Notes_for_Newbeams#Track notes:-Elf Dine on Ho Ho|Elf Dine on Ho Ho]], [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2004%20Hypnocloudsmack%201.mp3 play], |
| <br />
| | |
| In the 11 limit, two generators are equated to 11/8 (meaning 99/98 is tempered out). This means that three stacked generators makes the <a class="wiki_link" href="/orwell%20tetrad">orwell tetrad</a> 1/1-7/6-11/8-8/5, a chord in which every interval is a (tempered) 11-limit consonance. Other such chords in orwell are the <a class="wiki_link" href="/keenanismic%20chords">keenanismic tetrads</a> and the <a class="wiki_link" href="/swetismic%20chords">swetismic chords</a>.<br />
| | [[Technical_Notes_for_Newbeams#Track notes:-Spun|Spun]], [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3 play], |
| <br />
| | |
| Compatible equal temperaments include <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/53edo">53edo</a>, and <a class="wiki_link" href="/84edo">84edo</a>. Orwell is in better tune in lower limits than higher ones; the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> is <a class="wiki_link" href="/296edo">296edo</a> in the 5-limit, <a class="wiki_link" href="/137edo">137edo</a> in the 7-limit, and <a class="wiki_link" href="/53edo">53edo</a> in the 11-limit. It tempers out the semicomma in the 5-limit, and so belongs to the <a class="wiki_link" href="/semicomma%20family">semicomma family</a>. In the 7-limit it tempers out 225/224, 1728/1715, 2430/2401 and 6144/6125 in the 7-limit, and 99/98, 121/120, 176/175, 385/384 and 540/539 in the 11-limit. By adding 275/273 to the list of commas it can be extended to the 13-limit as <a class="wiki_link" href="/Semicomma%20family#Orwell-13-limit">tridecimal orwell</a>, and by adding instead 66/65, <a class="wiki_link" href="/Semicomma%20family#Winston">winston temperament</a>.<br />
| | [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3 one drop of rain], [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3 play], |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="Properties--Watcher"></a><!-- ws:end:WikiTextHeadingRule:2 -->Watcher</h3>
| |
| <br />
| |
| By switching the roles of the period and generator, we end up with a nonoctave temperament that is to orwell what <a class="wiki_link" href="/angel">angel</a> and <a class="wiki_link" href="/devadoot">devadoot</a> are to meantone and magic, respectively. There is an interesting MOS with 7 notes per period; if this is derived as a subset of <a class="wiki_link" href="/84edt">84edt</a> (which has 12 notes per period, and is almost identical to 53edo), the resulting MOS has the same structure as the 12edo diatonic scale, only compressed so that the period is ~272 cents rather than an octave! Thus, a piano keyboard for this MOS would look exactly the same as a typical keyboard, only what looks like an octave wouldn't be one anymore. This temperament could be called <a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Watcher_(angel)" rel="nofollow">watcher</a>, a reference to a class of angels whose very name carries Orwellian connotations. The 12-limit otonality (1:2:3:4:5:6:7:8:9:10:11:12) and utonality both have complexity 4. If we consider these to be the fundamental consonances, then using the 7-note-per period MOS, there are exactly 3 of each type per period, which again is analogous to the diatonic scale. While angel and devadoot don't perform well past the 10-limit, watcher handles the 12-limit with ease. Straight-fretted watcher guitars could be built as long as the strings were all tuned to period-equivalent notes.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Interval chain"></a><!-- ws:end:WikiTextHeadingRule:4 -->Interval chain</h1>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+ivecomewithabucketofroses.mp3 i've come with a bucket of roses] and [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+myownhouse.mp3 my own house] by [[Andrew_Heathwaite|Andrew Heathwaite]] |
| <tr>
| |
| <th>Generators<br />
| |
| </th>
| |
| <th>Cents*<br />
| |
| </th>
| |
| <th>11-limit ratios<br />
| |
| (orwell mapping)<br />
| |
| </th>
| |
| <th>13-limit ratios<br />
| |
| (orwell mapping)<br />
| |
| </th>
| |
| <th>13-limit ratios<br />
| |
| (winston mapping)<br />
| |
| </th>
| |
| <th>13-limit ratios<br />
| |
| (blair mapping)<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td style="text-align: right;">0.00<br />
| |
| </td>
| |
| <td style="text-align: left;">1/1<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td style="text-align: right;">271.43<br />
| |
| </td>
| |
| <td style="text-align: left;">7/6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/11, 15/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td style="text-align: right;">542.85<br />
| |
| </td>
| |
| <td style="text-align: left;">11/8, 15/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18/13<br />
| |
| </td>
| |
| <td>35/26, 39/28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td style="text-align: right;">814.28<br />
| |
| </td>
| |
| <td style="text-align: left;">8/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21/13, 52/33<br />
| |
| </td>
| |
| <td>13/8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td style="text-align: right;">1085.71<br />
| |
| </td>
| |
| <td style="text-align: left;">15/8, 28/15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/7<br />
| |
| </td>
| |
| <td>24/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td style="text-align: right;">157.13<br />
| |
| </td>
| |
| <td style="text-align: left;">12/11, 11/10, 35/32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/12<br />
| |
| </td>
| |
| <td>14/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td style="text-align: right;">428.56<br />
| |
| </td>
| |
| <td style="text-align: left;">14/11, 9/7, 32/25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/10, 33/26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td style="text-align: right;">699.98<br />
| |
| </td>
| |
| <td style="text-align: left;">3/2<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>52/35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td style="text-align: right;">971.41<br />
| |
| </td>
| |
| <td style="text-align: left;">7/4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>26/15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td style="text-align: right;">42.84<br />
| |
| </td>
| |
| <td style="text-align: left;">49/48, 36/35, 33/32<br />
| |
| </td>
| |
| <td>40/39<br />
| |
| </td>
| |
| <td>27/26<br />
| |
| </td>
| |
| <td>26/25<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td style="text-align: right;">314.26<br />
| |
| </td>
| |
| <td style="text-align: left;">6/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/11<br />
| |
| </td>
| |
| <td>39/32<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td style="text-align: right;">585.69<br />
| |
| </td>
| |
| <td style="text-align: left;">7/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>39/28<br />
| |
| </td>
| |
| <td>18/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td style="text-align: right;">857.12<br />
| |
| </td>
| |
| <td style="text-align: left;">18/11<br />
| |
| </td>
| |
| <td>64/39<br />
| |
| </td>
| |
| <td>13/8<br />
| |
| </td>
| |
| <td>21/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td style="text-align: right;">1128.54<br />
| |
| </td>
| |
| <td style="text-align: left;">21/11, 27/14, 48/25<br />
| |
| </td>
| |
| <td>25/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>39/20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td style="text-align: right;">199.97<br />
| |
| </td>
| |
| <td style="text-align: left;">9/8, 28/25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td style="text-align: right;">471.40<br />
| |
| </td>
| |
| <td style="text-align: left;">21/16<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td style="text-align: right;">742.82<br />
| |
| </td>
| |
| <td style="text-align: left;">49/32, 54/35<br />
| |
| </td>
| |
| <td>20/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td style="text-align: right;">1014.25<br />
| |
| </td>
| |
| <td style="text-align: left;">9/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td style="text-align: right;">85.67<br />
| |
| </td>
| |
| <td style="text-align: left;">21/20<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>26/25<br />
| |
| </td>
| |
| <td>27/26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td style="text-align: right;">357.10<br />
| |
| </td>
| |
| <td style="text-align: left;">27/22, 49/40<br />
| |
| </td>
| |
| <td>16/13<br />
| |
| </td>
| |
| <td>39/32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td style="text-align: right;">628.52<br />
| |
| </td>
| |
| <td>36/25<br />
| |
| </td>
| |
| <td>56/39<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td style="text-align: right;">899.95<br />
| |
| </td>
| |
| <td>27/16, 42/25<br />
| |
| </td>
| |
| <td>22/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td style="text-align: right;">1171.38<br />
| |
| </td>
| |
| <td>63/32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>39/20<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| *in 11-limit POTE tuning<br />
| | [http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3 Orwellian Cameras] by [[Chris_Vaisvil|Chris Vaisvil]] |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Spectrum of Orwell Tunings by Eigenmonzos"></a><!-- ws:end:WikiTextHeadingRule:6 -->Spectrum of Orwell Tunings by Eigenmonzos</h1>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | [http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3 Tunicata and Fugue] by [http://www.archive.org/details/TunicataAndFugue Peter Kosmorsky] |
| <tr>
| |
| <th>Eigenmonzo<br />
| |
| </th>
| |
| <th>Subminor Third<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>7/6<br />
| |
| </td>
| |
| <td>266.871<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14/11<br />
| |
| </td>
| |
| <td>269.585<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12/11<br />
| |
| </td>
| |
| <td>270.127<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11/9<br />
| |
| </td>
| |
| <td>271.049<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8/7<br />
| |
| </td>
| |
| <td>271.103<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7/5<br />
| |
| </td>
| |
| <td>271.137 (7 and 11 limit minimx)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5/4<br />
| |
| </td>
| |
| <td>271.229<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6/5<br />
| |
| </td>
| |
| <td>271.564 (5 limit minimax)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10/9<br />
| |
| </td>
| |
| <td>271.623 (9 limit minimax)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4/3<br />
| |
| </td>
| |
| <td>271.708<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9/7<br />
| |
| </td>
| |
| <td>272.514<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11/10<br />
| |
| </td>
| |
| <td>273.001<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11/8<br />
| |
| </td>
| |
| <td>275.659<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| [6 5/2] eigenmonzos: <a class="wiki_link" href="/orwellwoo13">orwellwoo13</a> <a class="wiki_link" href="/orwellwoo22">orwellwoo22</a><br /> | | [https://soundcloud.com/tarkan-grood/mountain-village-tarkangrood Mountain Villiage] [http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3 play] by Tarkan Grood |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="MOSes"></a><!-- ws:end:WikiTextHeadingRule:8 -->MOSes</h1>
| |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="MOSes-9-note (LsLsLsLss, proper)"></a><!-- ws:end:WikiTextHeadingRule:10 -->9-note (LsLsLsLss, proper)</h2>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | [http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3 Swing in Orwell-9] |
| <tr>
| |
| <td>Small (&quot;minor&quot;) interval<br />
| |
| </td>
| |
| <td>114.29<br />
| |
| </td>
| |
| <td>228.59<br />
| |
| </td>
| |
| <td>385.72<br />
| |
| </td>
| |
| <td>500.02<br />
| |
| </td>
| |
| <td>657.15<br />
| |
| </td>
| |
| <td>771.44<br />
| |
| </td>
| |
| <td>928.57<br />
| |
| </td>
| |
| <td>1042.87<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>JI intervals represented<br />
| |
| </td>
| |
| <td>15/14~16/15<br />
| |
| </td>
| |
| <td>8/7<br />
| |
| </td>
| |
| <td>5/4<br />
| |
| </td>
| |
| <td>4/3<br />
| |
| </td>
| |
| <td>16/11<br />
| |
| </td>
| |
| <td>14/9~11/7<br />
| |
| </td>
| |
| <td>12/7<br />
| |
| </td>
| |
| <td>11/6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Large (&quot;major&quot;) interval<br />
| |
| </td>
| |
| <td>157.13<br />
| |
| </td>
| |
| <td>271.43<br />
| |
| </td>
| |
| <td>428.56<br />
| |
| </td>
| |
| <td>542.85<br />
| |
| </td>
| |
| <td>699.98<br />
| |
| </td>
| |
| <td>814.28<br />
| |
| </td>
| |
| <td>971.41<br />
| |
| </td>
| |
| <td>1085.71<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>JI intervals represented<br />
| |
| </td>
| |
| <td>12/11~11/10<br />
| |
| </td>
| |
| <td>7/6<br />
| |
| </td>
| |
| <td>14/11~9/7<br />
| |
| </td>
| |
| <td>11/8<br />
| |
| </td>
| |
| <td>3/2<br />
| |
| </td>
| |
| <td>8/5<br />
| |
| </td>
| |
| <td>7/4<br />
| |
| </td>
| |
| <td>15/8<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="MOSes-13-note (LLLsLLsLLsLLs, improper)"></a><!-- ws:end:WikiTextHeadingRule:12 -->13-note (LLLsLLsLLsLLs, improper)</h2>
| | [http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Schizo_Blue__22_EDO_Orwell__first_mix_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3 Schizo Blue] by [https://soundcloud.com/lois-lancaster/schizo-blue-22-edo-orwell Roncevaux (Löis Lancaster)] |
|
| |
|
| |
|
| <table class="wiki_table">
| | [http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Sejaliscos_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3 Sejaliscos] by [https://soundcloud.com/lois-lancaster/sejaliscos Roncevaux] |
| <tr>
| |
| <td>Small (&quot;minor&quot;) interval<br />
| |
| </td>
| |
| <td>42.84<br />
| |
| </td>
| |
| <td>157.13<br />
| |
| </td>
| |
| <td>271.43<br />
| |
| </td>
| |
| <td>314.26<br />
| |
| </td>
| |
| <td>428.56<br />
| |
| </td>
| |
| <td>542.85<br />
| |
| </td>
| |
| <td>585.69<br />
| |
| </td>
| |
| <td>699.98<br />
| |
| </td>
| |
| <td>814.28<br />
| |
| </td>
| |
| <td>857<br />
| |
| </td>
| |
| <td>971.41<br />
| |
| </td>
| |
| <td>1085.71<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>JI intervals represented<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12/11~11/10<br />
| |
| </td>
| |
| <td>7/6<br />
| |
| </td>
| |
| <td>6/5<br />
| |
| </td>
| |
| <td>14/11~9/7<br />
| |
| </td>
| |
| <td>11/8<br />
| |
| </td>
| |
| <td>7/5<br />
| |
| </td>
| |
| <td>3/2<br />
| |
| </td>
| |
| <td>8/5<br />
| |
| </td>
| |
| <td>18/11<br />
| |
| </td>
| |
| <td>7/4<br />
| |
| </td>
| |
| <td>15/8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Large (&quot;major&quot;) interval<br />
| |
| </td>
| |
| <td>114.29<br />
| |
| </td>
| |
| <td>228.59<br />
| |
| </td>
| |
| <td>342.88<br />
| |
| </td>
| |
| <td>385.72<br />
| |
| </td>
| |
| <td>500.02<br />
| |
| </td>
| |
| <td>614.31<br />
| |
| </td>
| |
| <td>657.15<br />
| |
| </td>
| |
| <td>771.44<br />
| |
| </td>
| |
| <td>885.74<br />
| |
| </td>
| |
| <td>928.57<br />
| |
| </td>
| |
| <td>1042.87<br />
| |
| </td>
| |
| <td>1157.16<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>JI intervals represented<br />
| |
| </td>
| |
| <td>15/14~16/15<br />
| |
| </td>
| |
| <td>8/7<br />
| |
| </td>
| |
| <td>11/9<br />
| |
| </td>
| |
| <td>5/4<br />
| |
| </td>
| |
| <td>4/3<br />
| |
| </td>
| |
| <td>10/7<br />
| |
| </td>
| |
| <td>16/11<br />
| |
| </td>
| |
| <td>14/9~11/7<br />
| |
| </td>
| |
| <td>5/3<br />
| |
| </td>
| |
| <td>12/7<br />
| |
| </td>
| |
| <td>11/6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | =Keyboards= |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Planar temperaments"></a><!-- ws:end:WikiTextHeadingRule:14 -->Planar temperaments</h1>
| | If only there were a way to make these interactive, that would be pretty nifty. |
| Following is a list of rank three, or planar temperaments that are supported by orwell temperament.<br />
| |
|
| |
|
| | [[File:Orwell_13.png|alt=Orwell_13.png|1023x292px|Orwell_13.png]] |
|
| |
|
| <table class="wiki_table">
| | =[[File:Orwell_22.png|alt=Orwell_22.png|1023x292px|Orwell_22.png]]= |
| <tr>
| | [[File:orwell13_axis49.png|alt=orwell13_axis49.png|orwell13_axis49.png]] |
| <th colspan="2">Planar temperament<br />
| |
| </th>
| |
| <th colspan="4">Among others, planar temperament is also supported by...<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <th>7-limit<br />
| |
| </th>
| |
| <th>11-limit<br />
| |
| extension<br />
| |
| </th>
| |
| <th>9tet<br />
| |
| </th>
| |
| <th>22tet<br />
| |
| </th>
| |
| <th>31tet<br />
| |
| </th>
| |
| <th>53tet<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td><a class="wiki_link" href="/Marvel%20family">marvel</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>negri, septimin, august,<br />
| |
| amavil, enneaportent<br />
| |
| </td>
| |
| <td>magic, pajara, wizard, porky<br />
| |
| </td>
| |
| <td>meantone, miracle, tritonic,<br />
| |
| slender, würschmidt<br />
| |
| </td>
| |
| <td>garibaldi, catakleismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>marvel<br />
| |
| </td>
| |
| <td>negri, septimin, enneaportent<br />
| |
| </td>
| |
| <td>magic, pajarous, wizard<br />
| |
| </td>
| |
| <td>meanpop, miracle, tritoni, slender<br />
| |
| </td>
| |
| <td>garibaldi, catakleismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>minerva<br />
| |
| </td>
| |
| <td>negric, august, amavil<br />
| |
| </td>
| |
| <td>telepathy, pajara<br />
| |
| </td>
| |
| <td>meantone, revelation, würschmidt<br />
| |
| </td>
| |
| <td>cataclysmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>artemis*<br />
| |
| </td>
| |
| <td>wilsec<br />
| |
| </td>
| |
| <td>divination, hemipaj, porky<br />
| |
| </td>
| |
| <td>migration, oracle, tritonic<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><a class="wiki_link" href="/Porwell%20family">hewuermity</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>triforce, armodue,<br />
| |
| twothirdtonic<br />
| |
| </td>
| |
| <td>porcupine, astrology, shrutar,<br />
| |
| hendecatonic, septisuperfourth<br />
| |
| </td>
| |
| <td>hemiwürschmidt, valentine,<br />
| |
| mohajira, grendel<br />
| |
| </td>
| |
| <td>amity, hemischis,<br />
| |
| hemikleismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| <td>triforce, armodue,<br />
| |
| twothirdtonic<br />
| |
| </td>
| |
| <td>porcupine, astrology, shrutar,<br />
| |
| hendecatonic<br />
| |
| </td>
| |
| <td>hemiwur, valentine, mohajira<br />
| |
| </td>
| |
| <td>hitchcock,<br />
| |
| hemikleismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>jupiter<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>septisuperfourth<br />
| |
| </td>
| |
| <td>hemiwürschmidt, grendel<br />
| |
| </td>
| |
| <td>amity, hemischis<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><a class="wiki_link" href="/Orwellismic%20family">orwellian</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>beep, secund, infraorwell,<br />
| |
| niner<br />
| |
| </td>
| |
| <td>superpyth, doublewide,<br />
| |
| echidna<br />
| |
| </td>
| |
| <td>myna, mothra, sentinel,<br />
| |
| semisept<br />
| |
| </td>
| |
| <td>quartonic, buzzard<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>orwellian<br />
| |
| </td>
| |
| <td>pentoid, secund<br />
| |
| </td>
| |
| <td>suprapyth, doublewide<br />
| |
| </td>
| |
| <td>myno, mothra, sentinel<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>guanyin<br />
| |
| </td>
| |
| <td>infraorwell, niner<br />
| |
| </td>
| |
| <td>superpyth, fleetwood, echidna<br />
| |
| </td>
| |
| <td>myna, mosura, semisept<br />
| |
| </td>
| |
| <td>quartonic, buzzard<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><a class="wiki_link" href="/Nuwell%20family">nuwell</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>progression, superpelog<br />
| |
| </td>
| |
| <td>quasisuper, hedgehog<br />
| |
| </td>
| |
| <td>squares, nusecond<br />
| |
| </td>
| |
| <td>tricot, hamity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>big brother<br />
| |
| </td>
| |
| <td>progression, superpelog<br />
| |
| </td>
| |
| <td>quasisupra, hedgehog<br />
| |
| </td>
| |
| <td>squares, nusecond<br />
| |
| </td>
| |
| <td>tricot, hamity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><a class="wiki_link" href="/Horwell%20family">horwell</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>bisupermajor, escaped,<br />
| |
| fifthplus<br />
| |
| </td>
| |
| <td>hemithirds, worschmidt,<br />
| |
| tertiaseptal<br />
| |
| </td>
| |
| <td>countercata, pontiac<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>zelda<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>bisupermajor, sensa<br />
| |
| </td>
| |
| <td>hemithirds, worschmidt, tertia<br />
| |
| </td>
| |
| <td>countercata<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| *weak extension (one or more generators from the parent temperament are split)<br />
| | See: [[Orwell_on_an_Isomorphic_Keyboard|Orwell on an Isomorphic Keyboard]] [[Category:11-limit]] |
| <br />
| | [[Category:7-limit]] |
| <!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Chords of orwell"></a><!-- ws:end:WikiTextHeadingRule:16 --><a class="wiki_link" href="/Chords%20of%20orwell">Chords of orwell</a></h1>
| | [[Category:84edo]] |
| <br />
| | [[Category:mos]] |
| <!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="MOS transversals"></a><!-- ws:end:WikiTextHeadingRule:18 -->MOS transversals</h1>
| | [[Category:orwell]] |
| <a class="wiki_link" href="/orwell13trans">orwell13trans</a><br />
| | [[Category:semicomma]] |
| <a class="wiki_link" href="/orwell22trans">orwell22trans</a><br />
| | [[Category:temperament]] |
| <a class="wiki_link" href="/orwell31trans">orwell31trans</a><br />
| |
| <a class="wiki_link" href="/orwell13trans57">orwell13trans57</a><br />
| |
| <a class="wiki_link" href="/orwell22trans57">orwell22trans57</a><br />
| |
| <a class="wiki_link" href="/orwell31trans57">orwell31trans57</a><br />
| |
| <br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:20:&lt;h1&gt; --><h1 id="toc10"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:20 -->Music</h1>
| |
| <a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow">Trio in Orwell</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br />
| |
| <a class="wiki_link" href="/earwig">earwig</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/earwig.mp3" rel="nofollow">play</a>,<br />
| |
| <a class="wiki_link" href="/Technical%20Notes%20for%20Newbeams#Track%20notes:-Elf%20Dine%20on%20Ho%20Ho">Elf Dine on Ho Ho</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2004%20Hypnocloudsmack%201.mp3" rel="nofollow">play</a>,<br />
| |
| <a class="wiki_link" href="/Technical%20Notes%20for%20Newbeams#Track%20notes:-Spun">Spun</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3" rel="nofollow">play</a>,<br />
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3" rel="nofollow">one drop of rain</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3" rel="nofollow">play</a>,<br />
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+ivecomewithabucketofroses.mp3" rel="nofollow">i've come with a bucket of roses</a> and <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+myownhouse.mp3" rel="nofollow">my own house</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br />
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow">Orwellian Cameras</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a><br />
| |
| <a class="wiki_link_ext" href="http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3" rel="nofollow">Tunicata and Fugue</a> by <a class="wiki_link_ext" href="http://www.archive.org/details/TunicataAndFugue" rel="nofollow">Peter Kosmorsky</a><br />
| |
| <a class="wiki_link_ext" href="https://soundcloud.com/tarkan-grood/mountain-village-tarkangrood" rel="nofollow">Mountain Villiage</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3" rel="nofollow">play</a> by Tarkan Grood<br />
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3" rel="nofollow">Swing in Orwell-9</a><br />
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Schizo_Blue__22_EDO_Orwell__first_mix_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3" rel="nofollow">Schizo Blue</a> by <a class="wiki_link_ext" href="https://soundcloud.com/lois-lancaster/schizo-blue-22-edo-orwell" rel="nofollow">Roncevaux (Löis Lancaster)</a><br />
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Sejaliscos_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3" rel="nofollow">Sejaliscos</a> by <a class="wiki_link_ext" href="https://soundcloud.com/lois-lancaster/sejaliscos" rel="nofollow">Roncevaux</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:22:&lt;h1&gt; --><h1 id="toc11"><a name="Keyboards"></a><!-- ws:end:WikiTextHeadingRule:22 -->Keyboards</h1>
| |
| If only there were a way to make these interactive, that would be pretty nifty.<br />
| |
| <!-- ws:start:WikiTextLocalImageRule:879:&lt;img src=&quot;/file/view/Orwell_13.png/288210264/1023x292/Orwell_13.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 292px; width: 1023px;&quot; /&gt; --><img src="/file/view/Orwell_13.png/288210264/1023x292/Orwell_13.png" alt="Orwell_13.png" title="Orwell_13.png" style="height: 292px; width: 1023px;" /><!-- ws:end:WikiTextLocalImageRule:879 --><br />
| |
| <!-- ws:start:WikiTextHeadingRule:24:&lt;h1&gt; --><h1 id="toc12"><!-- ws:end:WikiTextHeadingRule:24 --><!-- ws:start:WikiTextLocalImageRule:880:&lt;img src=&quot;/file/view/Orwell_22.png/288210350/1023x292/Orwell_22.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 292px; width: 1023px;&quot; /&gt; --><img src="/file/view/Orwell_22.png/288210350/1023x292/Orwell_22.png" alt="Orwell_22.png" title="Orwell_22.png" style="height: 292px; width: 1023px;" /><!-- ws:end:WikiTextLocalImageRule:880 --></h1>
| |
| <!-- ws:start:WikiTextLocalImageRule:881:&lt;img src=&quot;/file/view/orwell13_axis49.png/302248228/orwell13_axis49.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/orwell13_axis49.png/302248228/orwell13_axis49.png" alt="orwell13_axis49.png" title="orwell13_axis49.png" /><!-- ws:end:WikiTextLocalImageRule:881 --><br />
| |
| See: <a class="wiki_link" href="/Orwell%20on%20an%20Isomorphic%20Keyboard">Orwell on an Isomorphic Keyboard</a></body></html></pre></div>
| |