MOS cradle: Difference between revisions

Wikispaces>Andrew_Heathwaite
**Imported revision 40812555 - Original comment: **
Wikispaces>guest
**Imported revision 413560296 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2008-10-05 21:39:16 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2013-03-10 08:22:48 UTC</tt>.<br>
: The original revision id was <tt>40812555</tt>.<br>
: The original revision id was <tt>413560296</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=MOS Cradle=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=MOS Cradle=  
refers to a technique of embedding one [[MOSScales|MOS scale]] inside another, to create a new hybrid scale, a MOS Cradle Scale. I (Andrew Heathwaite) invite you to experiment &amp; share the results here.
refers to a technique of embedding one [[xenharmonic/MOSScales|MOS scale]] inside another, to create a new hybrid scale, a MOS Cradle Scale. I (Andrew Heathwaite) invite you to experiment &amp; share the results here.


Check out &amp; add to a growing repository of MOS Cradle Scales [[MOS Cradle Scales|here]].
Check out &amp; add to a growing repository of MOS Cradle Scales [[xenharmonic/MOS Cradle Scales|here]].


For this tutorial, I assume basic knowledge of Moment of Symmetry scale design. To summarize, you can design scales by building a chain of one interval (the **generator**) within a **period** of another interval -- often, but not always, the octave. When the resulting set of notes has exactly two step sizes, we call the scale a Moment of Symmetry, or MOS, scale. A prime example: the [[Pythagorean Scale]], built using the octave as the period &amp; the perfect fifth as the generator.
For this tutorial, I assume basic knowledge of Moment of Symmetry scale design. To summarize, you can design scales by building a chain of one interval (the **generator**) within a **period** of another interval -- often, but not always, the octave. When the resulting set of notes has exactly two step sizes, we call the scale a Moment of Symmetry, or MOS, scale. A prime example: the [[xenharmonic/Pythagorean Scale|Pythagorean Scale]], built using the octave as the period &amp; the perfect fifth as the generator.


For this tutorial, I will limit us to MOS scales as subsets of [[edo]]s, because we can easily show the steps as degrees in the superscale. But do keep in mind that you can apply these ideas to [[nonoctave]] &amp; [[JustIntonation|JI]] scales just as easily &amp; with just as interesting results!
For this tutorial, I will limit us to MOS scales as subsets of [[xenharmonic/edo|edo]]s, because we can easily show the steps as degrees in the superscale. But do keep in mind that you can apply these ideas to [[xenharmonic/nonoctave|nonoctave]] &amp; [[xenharmonic/JustIntonation|JI]] scales just as easily &amp; with just as interesting results!


==The "Parent"==  
==The "Parent"==  


We begin with a classic MOS scale. So, just to get us started, we'll use 11/31 of an octave as our generator, &amp; the octave as our period. At five notes, we close on a pentatonic scale, a subset of [[31edo]]. Throughout this tutorial, I will show the scales as step degrees of the superscale, like this:
We begin with a classic MOS scale. So, just to get us started, we'll use 11/31 of an octave as our generator, &amp; the octave as our period. At five notes, we close on a pentatonic scale, a subset of [[xenharmonic/31edo|31edo]]. Throughout this tutorial, I will show the scales as step degrees of the superscale, like this:


9 2 9 2 9
9 2 9 2 9
Line 29: Line 29:
===Using L===  
===Using L===  


Let's use L = 9. We take those 9 degrees &amp; look at ways of making new MOS scales within that, just as we'd do if we wanted MOS scales in [[9edo]]. So let's try a few:
Let's use L = 9. We take those 9 degrees &amp; look at ways of making new MOS scales within that, just as we'd do if we wanted MOS scales in [[xenharmonic/9edo|9edo]]. So let's try a few:


generator 1/9:
generator 1/9:
Line 84: Line 84:
==Doubling/Tripling the edo==  
==Doubling/Tripling the edo==  


If you want to use MOS Cradle to elaborate on a scale in a small edo, consider doubling or tripling, etc., the number of notes. Say you want to use the pentatonic scale in [[7edo]]:
If you want to use MOS Cradle to elaborate on a scale in a small edo, consider doubling or tripling, etc., the number of notes. Say you want to use the pentatonic scale in [[xenharmonic/7edo|7edo]]:


1 2 1 2 1
1 2 1 2 1


You can't use L or s as a cradle here to get a new scale. But, if you double the number of pitches, going into the territory of [[14edo]], you get:
You can't use L or s as a cradle here to get a new scale. But, if you double the number of pitches, going into the territory of [[xenharmonic/14edo|14edo]], you get:


2 4 2 4 2
2 4 2 4 2
Line 99: Line 99:
==A Cradle in a Cradle==  
==A Cradle in a Cradle==  


One can, of course, perform MOS Cradle on MOS Cradle scales &amp; produce scales w/ four step sizes. Let's start with Swooning Rushes, a subset of [[11edo]]:
One can, of course, perform MOS Cradle on MOS Cradle scales &amp; produce scales w/ four step sizes. Let's start with Swooning Rushes, a subset of [[xenharmonic/11edo|11edo]]:


2 3 1 3 2
2 3 1 3 2
Line 111: Line 111:
__**3 1**__ 6 2 __**1 3**__
__**3 1**__ 6 2 __**1 3**__


This new scale, a subset of [[22edo]], has four step sizes (1, 2, 3, 6) &amp; contains both th original MOS &amp; th Cradle Scale Swooning Rushes. Not bad!
This new scale, a subset of [[xenharmonic/22edo|22edo]], has four step sizes (1, 2, 3, 6) &amp; contains both th original MOS &amp; th Cradle Scale Swooning Rushes. Not bad!


(This can go on forever, in theory. If we double it again, we might get this scale, a subset of [[44edo]]: 6 2 7 5 4 5 7 2 6!)
(This can go on forever, in theory. If we double it again, we might get this scale, a subset of [[xenharmonic/44edo|44edo]]: 6 2 7 5 4 5 7 2 6!)


Now I think I've given more than enough examples for you to get started on your own! If you discover other neat properties of these scales, feel free to edit this page &amp; add your findings. &amp; when you design lovely new MOS Cradle Scales, do add them to the [[MOS Cradle Scales|repository]]!</pre></div>
Now I think I've given more than enough examples for you to get started on your own! If you discover other neat properties of these scales, feel free to edit this page &amp; add your findings. &amp; when you design lovely new MOS Cradle Scales, do add them to the [[xenharmonic/MOS Cradle Scales|repository]]!
 
 
[[http://www.newswire.net/newsroom/financial/71283-ecommerce-mastery-review-by-sam-england.html|Make money from online shops]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;MOS Cradle&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="MOS Cradle"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;MOS Cradle&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;MOS Cradle&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="MOS Cradle"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;MOS Cradle&lt;/h1&gt;
  refers to a technique of embedding one &lt;a class="wiki_link" href="/MOSScales"&gt;MOS scale&lt;/a&gt; inside another, to create a new hybrid scale, a MOS Cradle Scale. I (Andrew Heathwaite) invite you to experiment &amp;amp; share the results here.&lt;br /&gt;
  refers to a technique of embedding one &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales"&gt;MOS scale&lt;/a&gt; inside another, to create a new hybrid scale, a MOS Cradle Scale. I (Andrew Heathwaite) invite you to experiment &amp;amp; share the results here.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Check out &amp;amp; add to a growing repository of MOS Cradle Scales &lt;a class="wiki_link" href="/MOS%20Cradle%20Scales"&gt;here&lt;/a&gt;.&lt;br /&gt;
Check out &amp;amp; add to a growing repository of MOS Cradle Scales &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20Cradle%20Scales"&gt;here&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For this tutorial, I assume basic knowledge of Moment of Symmetry scale design. To summarize, you can design scales by building a chain of one interval (the &lt;strong&gt;generator&lt;/strong&gt;) within a &lt;strong&gt;period&lt;/strong&gt; of another interval -- often, but not always, the octave. When the resulting set of notes has exactly two step sizes, we call the scale a Moment of Symmetry, or MOS, scale. A prime example: the &lt;a class="wiki_link" href="/Pythagorean%20Scale"&gt;Pythagorean Scale&lt;/a&gt;, built using the octave as the period &amp;amp; the perfect fifth as the generator.&lt;br /&gt;
For this tutorial, I assume basic knowledge of Moment of Symmetry scale design. To summarize, you can design scales by building a chain of one interval (the &lt;strong&gt;generator&lt;/strong&gt;) within a &lt;strong&gt;period&lt;/strong&gt; of another interval -- often, but not always, the octave. When the resulting set of notes has exactly two step sizes, we call the scale a Moment of Symmetry, or MOS, scale. A prime example: the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Pythagorean%20Scale"&gt;Pythagorean Scale&lt;/a&gt;, built using the octave as the period &amp;amp; the perfect fifth as the generator.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For this tutorial, I will limit us to MOS scales as subsets of &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt;s, because we can easily show the steps as degrees in the superscale. But do keep in mind that you can apply these ideas to &lt;a class="wiki_link" href="/nonoctave"&gt;nonoctave&lt;/a&gt; &amp;amp; &lt;a class="wiki_link" href="/JustIntonation"&gt;JI&lt;/a&gt; scales just as easily &amp;amp; with just as interesting results!&lt;br /&gt;
For this tutorial, I will limit us to MOS scales as subsets of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;edo&lt;/a&gt;s, because we can easily show the steps as degrees in the superscale. But do keep in mind that you can apply these ideas to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/nonoctave"&gt;nonoctave&lt;/a&gt; &amp;amp; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/JustIntonation"&gt;JI&lt;/a&gt; scales just as easily &amp;amp; with just as interesting results!&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="MOS Cradle-The &amp;quot;Parent&amp;quot;"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;The &amp;quot;Parent&amp;quot;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="MOS Cradle-The &amp;quot;Parent&amp;quot;"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;The &amp;quot;Parent&amp;quot;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
We begin with a classic MOS scale. So, just to get us started, we'll use 11/31 of an octave as our generator, &amp;amp; the octave as our period. At five notes, we close on a pentatonic scale, a subset of &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;. Throughout this tutorial, I will show the scales as step degrees of the superscale, like this:&lt;br /&gt;
We begin with a classic MOS scale. So, just to get us started, we'll use 11/31 of an octave as our generator, &amp;amp; the octave as our period. At five notes, we close on a pentatonic scale, a subset of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo"&gt;31edo&lt;/a&gt;. Throughout this tutorial, I will show the scales as step degrees of the superscale, like this:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
9 2 9 2 9&lt;br /&gt;
9 2 9 2 9&lt;br /&gt;
Line 140: Line 143:
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="MOS Cradle-The &amp;quot;Cradle&amp;quot;-Using L"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Using L&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="MOS Cradle-The &amp;quot;Cradle&amp;quot;-Using L"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Using L&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Let's use L = 9. We take those 9 degrees &amp;amp; look at ways of making new MOS scales within that, just as we'd do if we wanted MOS scales in &lt;a class="wiki_link" href="/9edo"&gt;9edo&lt;/a&gt;. So let's try a few:&lt;br /&gt;
Let's use L = 9. We take those 9 degrees &amp;amp; look at ways of making new MOS scales within that, just as we'd do if we wanted MOS scales in &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/9edo"&gt;9edo&lt;/a&gt;. So let's try a few:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
generator 1/9:&lt;br /&gt;
generator 1/9:&lt;br /&gt;
Line 195: Line 198:
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="MOS Cradle-Doubling/Tripling the edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Doubling/Tripling the edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="MOS Cradle-Doubling/Tripling the edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Doubling/Tripling the edo&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
If you want to use MOS Cradle to elaborate on a scale in a small edo, consider doubling or tripling, etc., the number of notes. Say you want to use the pentatonic scale in &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;:&lt;br /&gt;
If you want to use MOS Cradle to elaborate on a scale in a small edo, consider doubling or tripling, etc., the number of notes. Say you want to use the pentatonic scale in &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
1 2 1 2 1&lt;br /&gt;
1 2 1 2 1&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
You can't use L or s as a cradle here to get a new scale. But, if you double the number of pitches, going into the territory of &lt;a class="wiki_link" href="/14edo"&gt;14edo&lt;/a&gt;, you get:&lt;br /&gt;
You can't use L or s as a cradle here to get a new scale. But, if you double the number of pitches, going into the territory of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/14edo"&gt;14edo&lt;/a&gt;, you get:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 4 2 4 2&lt;br /&gt;
2 4 2 4 2&lt;br /&gt;
Line 210: Line 213:
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="MOS Cradle-A Cradle in a Cradle"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;A Cradle in a Cradle&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="MOS Cradle-A Cradle in a Cradle"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;A Cradle in a Cradle&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
One can, of course, perform MOS Cradle on MOS Cradle scales &amp;amp; produce scales w/ four step sizes. Let's start with Swooning Rushes, a subset of &lt;a class="wiki_link" href="/11edo"&gt;11edo&lt;/a&gt;:&lt;br /&gt;
One can, of course, perform MOS Cradle on MOS Cradle scales &amp;amp; produce scales w/ four step sizes. Let's start with Swooning Rushes, a subset of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/11edo"&gt;11edo&lt;/a&gt;:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 3 1 3 2&lt;br /&gt;
2 3 1 3 2&lt;br /&gt;
Line 222: Line 225:
&lt;u&gt;&lt;strong&gt;3 1&lt;/strong&gt;&lt;/u&gt; 6 2 &lt;u&gt;&lt;strong&gt;1 3&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
&lt;u&gt;&lt;strong&gt;3 1&lt;/strong&gt;&lt;/u&gt; 6 2 &lt;u&gt;&lt;strong&gt;1 3&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
This new scale, a subset of &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt;, has four step sizes (1, 2, 3, 6) &amp;amp; contains both th original MOS &amp;amp; th Cradle Scale Swooning Rushes. Not bad!&lt;br /&gt;
This new scale, a subset of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo"&gt;22edo&lt;/a&gt;, has four step sizes (1, 2, 3, 6) &amp;amp; contains both th original MOS &amp;amp; th Cradle Scale Swooning Rushes. Not bad!&lt;br /&gt;
&lt;br /&gt;
(This can go on forever, in theory. If we double it again, we might get this scale, a subset of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/44edo"&gt;44edo&lt;/a&gt;: 6 2 7 5 4 5 7 2 6!)&lt;br /&gt;
&lt;br /&gt;
Now I think I've given more than enough examples for you to get started on your own! If you discover other neat properties of these scales, feel free to edit this page &amp;amp; add your findings. &amp;amp; when you design lovely new MOS Cradle Scales, do add them to the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20Cradle%20Scales"&gt;repository&lt;/a&gt;!&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
(This can go on forever, in theory. If we double it again, we might get this scale, a subset of &lt;a class="wiki_link" href="/44edo"&gt;44edo&lt;/a&gt;: 6 2 7 5 4 5 7 2 6!)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Now I think I've given more than enough examples for you to get started on your own! If you discover other neat properties of these scales, feel free to edit this page &amp;amp; add your findings. &amp;amp; when you design lovely new MOS Cradle Scales, do add them to the &lt;a class="wiki_link" href="/MOS%20Cradle%20Scales"&gt;repository&lt;/a&gt;!&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://www.newswire.net/newsroom/financial/71283-ecommerce-mastery-review-by-sam-england.html" rel="nofollow"&gt;Make money from online shops&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>