Monzo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 602965630 - Original comment: tables for examples, added one space as padding as is used in most monzo expressions, for instance on the comma page**
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<span style="display: block; text-align: right;">[[Monzo(Esp)|Español]] - [[モンゾ|日本語]]</span>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2017-01-02 12:28:05 UTC</tt>.<br>
: The original revision id was <tt>602965630</tt>.<br>
: The revision comment was: <tt>tables for examples, added one space as padding as is used in most monzo expressions, for instance on the comma page</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">&lt;span style="display: block; text-align: right;"&gt;[[Monzo(Esp)|Español]] - [[モンゾ|日本語]]
&lt;/span&gt;
This page gives a pragmatic introduction to **monzos**. For the formal mathematical definition of visit the page [[Monzos and Interval Space]].


=Definition=  
This page gives a pragmatic introduction to '''monzos'''. For the formal mathematical definition of visit the page [[Monzos_and_Interval_Space|Monzos and Interval Space]].
A **monzo** is a way of notating a JI interval that allows us to express directly how any "composite" interval is represented in terms of those simpler prime intervals. They are typically written using the notation | a b c d e f ... &gt;, where the columns represent how the primes 2, 3, 5, 7, 11, 13, etc, in that order, contribute to the interval's prime factorization, up to some [[harmonic limit|prime limit]].
 
=Definition=
A '''monzo''' is a way of notating a JI interval that allows us to express directly how any "composite" interval is represented in terms of those simpler prime intervals. They are typically written using the notation | a b c d e f ... &gt;, where the columns represent how the primes 2, 3, 5, 7, 11, 13, etc, in that order, contribute to the interval's prime factorization, up to some [[Harmonic_Limit|prime limit]].


Monzos can be thought of as counterparts to [[Vals|vals]].
Monzos can be thought of as counterparts to [[Vals|vals]].


For a more mathematical discussion, see also [[Monzos and Interval Space]].
For a more mathematical discussion, see also [[Monzos_and_Interval_Space|Monzos and Interval Space]].


=Examples=  
=Examples=
For example, the interval 15/8 can be thought of as having 5*3 in the numerator, and 2*2*2 in the denominator. This can be compactly represented by the expression 2^-3 * 3^1 * 5^1, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the | ... &gt; brackets, hence yielding | -3 1 1 &gt;.
For example, the interval 15/8 can be thought of as having 5*3 in the numerator, and 2*2*2 in the denominator. This can be compactly represented by the expression 2^-3 * 3^1 * 5^1, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the | ... &gt; brackets, hence yielding | -3 1 1 &gt;.


Here are some common 5-limit monzos, for your reference:
Here are some common 5-limit monzos, for your reference:
||~ Ratio ||~ Monzo ||
 
||= 3/2 || | -1 1 0 &gt; ||
{| class="wikitable"
||= 5/4 || | -2 0 1 &gt; ||
|-
||= 9/8 || | -3 2 0 &gt; ||
! | Ratio
||= 81/80 || | -4 4 -1 &gt; ||
! | Monzo
|-
| style="text-align:center;" | 3/2
| | | -1 1 0 &gt;
|-
| style="text-align:center;" | 5/4
| | | -2 0 1 &gt;
|-
| style="text-align:center;" | 9/8
| | | -3 2 0 &gt;
|-
| style="text-align:center;" | 81/80
| | | -4 4 -1 &gt;
|}


Here are a few 7-limit monzos:
Here are a few 7-limit monzos:
||~ Ratio ||~ Monzo ||
||= 7/4 || | -2 0 0 1 &gt; ||
||= 7/6 || | -1 -1 0 1 &gt; ||
||= 7/5 || | 0 0 -1 1 &gt; ||


=Relationship with vals=  
{| class="wikitable"
//See also: [[Vals]], [[Keenan's explanation of vals]], [[Vals and Tuning Space]] (more mathematical)//
|-
! | Ratio
! | Monzo
|-
| style="text-align:center;" | 7/4
| | | -2 0 0 1 &gt;
|-
| style="text-align:center;" | 7/6
| | | -1 -1 0 1 &gt;
|-
| style="text-align:center;" | 7/5
| | | 0 0 -1 1 &gt;
|}
 
=Relationship with vals=
''See also: [[Vals|Vals]], [[Keenan's_explanation_of_vals|Keenan's explanation of vals]], [[Vals_and_Tuning_Space|Vals and Tuning Space]] (more mathematical)''


Monzos are important because they enable us to see how any JI interval "maps" onto a val. This mapping is expressed by writing the val and the monzo together, such as &lt; 12 19 28 | -4 4 -1 &gt;. The mapping is extremely easily to calculate: simply multiply together each component in the same position on both sides of the line, and add the results together. This is perhaps best demonstrated by example:
Monzos are important because they enable us to see how any JI interval "maps" onto a val. This mapping is expressed by writing the val and the monzo together, such as &lt; 12 19 28 | -4 4 -1 &gt;. The mapping is extremely easily to calculate: simply multiply together each component in the same position on both sides of the line, and add the results together. This is perhaps best demonstrated by example:


&lt; 12 19 28 | -4 4 -1 &gt;
&lt; 12 19 28 | -4 4 -1 &gt;
(12*-4) + (19*4) + (28*1)&lt;span class="st"&gt; = &lt;/span&gt;0
In this case, the val &lt; 12 19 28 | is the [[patent val]] for 12-equal, and | -4 4 -1 &gt; is 81/80, or the syntonic comma. The fact that &lt; 12 19 28 | -4 4 -1 &gt; tells us that 81/80 is mapped to 0 steps in 12-equal - aka it's tempered out - which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of western music, particularly western music composed for 12-equal or 12-tone well temperaments, is made possible by the above equation.
**In general: &lt; a b c | d e f &gt; = ad + be + cf**</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;monzos&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="display: block; text-align: right;"&gt;&lt;a class="wiki_link" href="/Monzo%28Esp%29"&gt;Español&lt;/a&gt; - &lt;a class="wiki_link" href="/%E3%83%A2%E3%83%B3%E3%82%BE"&gt;日本語&lt;/a&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
This page gives a pragmatic introduction to &lt;strong&gt;monzos&lt;/strong&gt;. For the formal mathematical definition of visit the page &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;Monzos and Interval Space&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Definition&lt;/h1&gt;
A &lt;strong&gt;monzo&lt;/strong&gt; is a way of notating a JI interval that allows us to express directly how any &amp;quot;composite&amp;quot; interval is represented in terms of those simpler prime intervals. They are typically written using the notation | a b c d e f ... &amp;gt;, where the columns represent how the primes 2, 3, 5, 7, 11, 13, etc, in that order, contribute to the interval's prime factorization, up to some &lt;a class="wiki_link" href="/harmonic%20limit"&gt;prime limit&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
Monzos can be thought of as counterparts to &lt;a class="wiki_link" href="/Vals"&gt;vals&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
For a more mathematical discussion, see also &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;Monzos and Interval Space&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Examples&lt;/h1&gt;
For example, the interval 15/8 can be thought of as having 5*3 in the numerator, and 2*2*2 in the denominator. This can be compactly represented by the expression 2^-3 * 3^1 * 5^1, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the | ... &amp;gt; brackets, hence yielding | -3 1 1 &amp;gt;.&lt;br /&gt;
&lt;br /&gt;
Here are some common 5-limit monzos, for your reference:&lt;br /&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;Ratio&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Monzo&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -1 1 0 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -2 0 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -3 2 0 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;81/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -4 4 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
Here are a few 7-limit monzos:&lt;br /&gt;


(12*-4) + (19*4) + (28*1)<span style=""> = </span>0


&lt;table class="wiki_table"&gt;
In this case, the val &lt; 12 19 28 | is the [[Patent_val|patent val]] for 12-equal, and | -4 4 -1 &gt; is 81/80, or the syntonic comma. The fact that &lt; 12 19 28 | -4 4 -1 &gt; tells us that 81/80 is mapped to 0 steps in 12-equal - aka it's tempered out - which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of western music, particularly western music composed for 12-equal or 12-tone well temperaments, is made possible by the above equation.
    &lt;tr&gt;
        &lt;th&gt;Ratio&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Monzo&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -2 0 0 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -1 -1 0 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 0 0 -1 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
'''In general: &lt; a b c | d e f &gt; = ad + be + cf'''      [[Category:definition]]
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Relationship with vals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Relationship with vals&lt;/h1&gt;
[[Category:intervals]]
&lt;em&gt;See also: &lt;a class="wiki_link" href="/Vals"&gt;Vals&lt;/a&gt;, &lt;a class="wiki_link" href="/Keenan%27s%20explanation%20of%20vals"&gt;Keenan's explanation of vals&lt;/a&gt;, &lt;a class="wiki_link" href="/Vals%20and%20Tuning%20Space"&gt;Vals and Tuning Space&lt;/a&gt; (more mathematical)&lt;/em&gt;&lt;br /&gt;
[[Category:prime_limit]]
&lt;br /&gt;
[[Category:theory]]
Monzos are important because they enable us to see how any JI interval &amp;quot;maps&amp;quot; onto a val. This mapping is expressed by writing the val and the monzo together, such as &amp;lt; 12 19 28 | -4 4 -1 &amp;gt;. The mapping is extremely easily to calculate: simply multiply together each component in the same position on both sides of the line, and add the results together. This is perhaps best demonstrated by example:&lt;br /&gt;
&lt;br /&gt;
&amp;lt; 12 19 28 | -4 4 -1 &amp;gt;&lt;br /&gt;
(12*-4) + (19*4) + (28*1)&lt;span class="st"&gt; = &lt;/span&gt;0&lt;br /&gt;
&lt;br /&gt;
In this case, the val &amp;lt; 12 19 28 | is the &lt;a class="wiki_link" href="/patent%20val"&gt;patent val&lt;/a&gt; for 12-equal, and | -4 4 -1 &amp;gt; is 81/80, or the syntonic comma. The fact that &amp;lt; 12 19 28 | -4 4 -1 &amp;gt; tells us that 81/80 is mapped to 0 steps in 12-equal - aka it's tempered out - which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of western music, particularly western music composed for 12-equal or 12-tone well temperaments, is made possible by the above equation.&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;In general: &amp;lt; a b c | d e f &amp;gt; = ad + be + cf&lt;/strong&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>