UDP: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 275947736 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 277107336 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-16 00:01:48 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-18 18:26:59 UTC</tt>.<br>
: The original revision id was <tt>275947736</tt>.<br>
: The original revision id was <tt>277107336</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 15: Line 15:
The generator is chosen so that more generators "up" also equals more "major" scale degrees, so that the two are in harmony. This also means that the UDP generator has to point in the same direction on the lattice as the chroma, or is //chroma-aligned.//
The generator is chosen so that more generators "up" also equals more "major" scale degrees, so that the two are in harmony. This also means that the UDP generator has to point in the same direction on the lattice as the chroma, or is //chroma-aligned.//


=Mathematical definition=
=Definition=
Given a [[periodic scale]] S, a //modal shift// by n may be defined as S'[i] = S[i+n]-S[n]. A modal shift is a //shift up// if S'[i] &gt;= S[i] for all i. This definition applies to the case which especially concerns us, where S is a monotonically strictly increasing periodic scale defined by a MOS. Given a MOS, there will be both a top mode, which is the farthest mode up, and a bottom mode, which is the farthest down. So long as the shifting takes place between the bottom and top mode, depending on the choice of generator g, shifts up will occur either when n is positive (if m such that S[m]=g shifts up) or negative (if it shifts down.)
Given a [[periodic scale]] S, a //modal shift// by n may be defined as S'[i] = S[i+n]-S[n]. A modal shift is a //shift up// if S'[i] &lt;= S[i] for all i. This definition applies to the case which especially concerns us, where S is a monotonically strictly increasing periodic scale defined by a MOS. Given a MOS, there will be both a top mode, which is the farthest mode up, and a bottom mode, which is the farthest down. So long as the shifting takes place between the bottom and top mode, depending on the choice of generator g, shifts up will occur either when n is positive (if m such that S[m]=g shifts up) or negative (if it shifts down.)  


If m shifts up, then D is such that mD shifts up to the top mode, and U is such that mU shifts down to the bottom mode; if m shifts down we reverse this so that -mU shifts up to the top mode and -mD to the bottom mode. If S is a periodic scale S such that the repetition interval **O** is some fraction 1/P of an octave, then the UDP notation for a given mode of a MOS is U|D(P). If P=1 we may omit it and just write U|D.
If m shifts up, then U is such that mU shifts up to the top mode, and D is such that mD shifts down to the bottom mode; if m shifts down we reverse this so that -mD shifts up to the top mode and -mU to the bottom mode. If S is a periodic scale S such that the repetition interval **O** is some fraction 1/P of an octave, then the UDP notation for a given mode of a MOS is U|D(P). If P=1 we may omit it and just write U|D.


For example, consider the quasiperiodic function with period 7 Lydian[i]:


As an example
|| -5 || -4 || -3 || -2 || -1 || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || 13 || 14 || 15 ||
* Meantone[7]'s ionian mode is 5|1(1), abbreviated 5|1 for short.
|| -21 || -16 || -13 || -8 || -3 || 0 || 5 || 10 || 15 || 18 || 23 || 28 || 31 || 36 || 41 || 46 || 49 || || 54 || 59 || 62 ||
* Melodic minor is 5|1(1) b3, abbreviated 5|1 b3 for short, but could also be 3|3(1) #7, abbreviated 3|3 #7 for short.
* Paul Erlich's standard pentachordal major is 4|4(2) #8, or alternatively 6|2(2) b3.
 
=Definition=
The UDP notation for any mode is U|D(P), where "u" specifies the number of chroma-aligned generators "up," d specifies the number of chroma-aligned generators "down," and p specifies the number of periods per equivalence interval. The chroma-aligned generator is the one such that more generators "up" also means more "major" scale degrees, or more generally, more "large" intervals that contain the root of the scale.
 
When the period is one, the (p) can be left off by convention for the short form of UDP notation, such that meantone's Ionian mode can simply be stated 5|1 instead of 5|1(1).
 
When the period is greater than one, "u" and "d" should be taken to represent the total number of generators up and down per **equivalence interval**, not per period. For example, Paul Erlich's "Static Symmetrical Major" scale is 2 2 3 2 2 2 2 3 2 2; this is notated 4|4(2). This has the handy property of u+d+p = the total number of notes in the scale. For example, 4+4+2 = 10, which tells us that Static Symmetrical Major is a decatonic scale.
 
Accidentals can follow the UDP string so as to specify a MODMOS. For example, in meantone[7], 5|1 b6 specifies harmonic major, and in porcupine[7], 6|0 b4 #7 specifies the 5-limit JI major scale.


=The Chroma-Aligned Generator=  
=The Chroma-Aligned Generator=  
Line 45: Line 35:


It should be noted that the chroma-aligned generator will change depending on which MOS of the temperament you're working within. For example, the chroma-aligned generator for mavila[7] is the 4/3, but for mavila[9] it's the 3/2.
It should be noted that the chroma-aligned generator will change depending on which MOS of the temperament you're working within. For example, the chroma-aligned generator for mavila[7] is the 4/3, but for mavila[9] it's the 3/2.
=Definition=
The UDP notation for any mode is U|D(P), where "u" specifies the number of chroma-aligned generators "up," d specifies the number of chroma-aligned generators "down," and p specifies the number of periods per equivalence interval. The chroma-aligned generator is the one such that more generators "up" also means more "major" scale degrees, or more generally, more "large" intervals that contain the root of the scale.
When the period is one, the (p) can be left off by convention for the short form of UDP notation, such that meantone's Ionian mode can simply be stated 5|1 instead of 5|1(1).
When the period is greater than one, "u" and "d" should be taken to represent the total number of generators up and down per **equivalence interval**, not per period. For example, Paul Erlich's "Static Symmetrical Major" scale is 2 2 3 2 2 2 2 3 2 2; this is notated 4|4(2). This has the handy property of u+d+p = the total number of notes in the scale. For example, 4+4+2 = 10, which tells us that Static Symmetrical Major is a decatonic scale.
Accidentals can follow the UDP string so as to specify a MODMOS. For example, in meantone[7], 5|1 b6 specifies harmonic major, and in porcupine[7], 6|0 b4 #7 specifies the 5-limit JI major scale.


=Rationale=  
=Rationale=  
Line 71: Line 69:
* Sensi[11] LLsLLLsLLLs: 8|2
* Sensi[11] LLsLLLsLLLs: 8|2
* Pajara[10] Static Symmetrical Major, ssLssssLss: 4|4(2)
* Pajara[10] Static Symmetrical Major, ssLssssLss: 4|4(2)
* Pajara[10] Standard Pentachordal Major, ssLsssLsss: 4|4(2) #8, 6|2(2) b3</pre></div>
* Pajara[10] Standard Pentachordal Major, ssLsssLsss: 4|4(2) #8, 6|2(2) b3
 
 
* Meantone[7]'s ionian mode is 5|1(1), abbreviated 5|1 for short.
* Melodic minor is 5|1(1) b3, abbreviated 5|1 b3 for short, but could also be 3|3(1) #7, abbreviated 3|3 #7 for short.
* Paul Erlich's standard pentachordal major is 4|4(2) #8, or alternatively 6|2(2) b3.
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Modal UDP Notation&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Modal UDP Notation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Modal UDP Notation&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Modal UDP Notation&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Modal UDP Notation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Modal UDP Notation&lt;/h1&gt;
Line 80: Line 84:
The generator is chosen so that more generators &amp;quot;up&amp;quot; also equals more &amp;quot;major&amp;quot; scale degrees, so that the two are in harmony. This also means that the UDP generator has to point in the same direction on the lattice as the chroma, or is &lt;em&gt;chroma-aligned.&lt;/em&gt;&lt;br /&gt;
The generator is chosen so that more generators &amp;quot;up&amp;quot; also equals more &amp;quot;major&amp;quot; scale degrees, so that the two are in harmony. This also means that the UDP generator has to point in the same direction on the lattice as the chroma, or is &lt;em&gt;chroma-aligned.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Mathematical definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Mathematical definition&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Definition&lt;/h1&gt;
Given a &lt;a class="wiki_link" href="/periodic%20scale"&gt;periodic scale&lt;/a&gt; S, a &lt;em&gt;modal shift&lt;/em&gt; by n may be defined as S'[i] = S[i+n]-S[n]. A modal shift is a &lt;em&gt;shift up&lt;/em&gt; if S'[i] &amp;gt;= S[i] for all i. This definition applies to the case which especially concerns us, where S is a monotonically strictly increasing periodic scale defined by a MOS. Given a MOS, there will be both a top mode, which is the farthest mode up, and a bottom mode, which is the farthest down. So long as the shifting takes place between the bottom and top mode, depending on the choice of generator g, shifts up will occur either when n is positive (if m such that S[m]=g shifts up) or negative (if it shifts down.)&lt;br /&gt;
Given a &lt;a class="wiki_link" href="/periodic%20scale"&gt;periodic scale&lt;/a&gt; S, a &lt;em&gt;modal shift&lt;/em&gt; by n may be defined as S'[i] = S[i+n]-S[n]. A modal shift is a &lt;em&gt;shift up&lt;/em&gt; if S'[i] &amp;lt;= S[i] for all i. This definition applies to the case which especially concerns us, where S is a monotonically strictly increasing periodic scale defined by a MOS. Given a MOS, there will be both a top mode, which is the farthest mode up, and a bottom mode, which is the farthest down. So long as the shifting takes place between the bottom and top mode, depending on the choice of generator g, shifts up will occur either when n is positive (if m such that S[m]=g shifts up) or negative (if it shifts down.) &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If m shifts up, then D is such that mD shifts up to the top mode, and U is such that mU shifts down to the bottom mode; if m shifts down we reverse this so that -mU shifts up to the top mode and -mD to the bottom mode. If S is a periodic scale S such that the repetition interval &lt;strong&gt;O&lt;/strong&gt; is some fraction 1/P of an octave, then the UDP notation for a given mode of a MOS is U|D(P). If P=1 we may omit it and just write U|D.&lt;br /&gt;
If m shifts up, then U is such that mU shifts up to the top mode, and D is such that mD shifts down to the bottom mode; if m shifts down we reverse this so that -mD shifts up to the top mode and -mU to the bottom mode. If S is a periodic scale S such that the repetition interval &lt;strong&gt;O&lt;/strong&gt; is some fraction 1/P of an octave, then the UDP notation for a given mode of a MOS is U|D(P). If P=1 we may omit it and just write U|D.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For example, consider the quasiperiodic function with period 7 Lydian[i]:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
As an example&lt;br /&gt;
 
&lt;ul&gt;&lt;li&gt;Meantone[7]'s ionian mode is 5|1(1), abbreviated 5|1 for short.&lt;/li&gt;&lt;li&gt;Melodic minor is 5|1(1) b3, abbreviated 5|1 b3 for short, but could also be 3|3(1) #7, abbreviated 3|3 #7 for short.&lt;/li&gt;&lt;li&gt;Paul Erlich's standard pentachordal major is 4|4(2) #8, or alternatively 6|2(2) b3.&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Definition&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
The UDP notation for any mode is U|D(P), where &amp;quot;u&amp;quot; specifies the number of chroma-aligned generators &amp;quot;up,&amp;quot; d specifies the number of chroma-aligned generators &amp;quot;down,&amp;quot; and p specifies the number of periods per equivalence interval. The chroma-aligned generator is the one such that more generators &amp;quot;up&amp;quot; also means more &amp;quot;major&amp;quot; scale degrees, or more generally, more &amp;quot;large&amp;quot; intervals that contain the root of the scale.&lt;br /&gt;
    &lt;tr&gt;
        &lt;td&gt;-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;br /&gt;
When the period is one, the (p) can be left off by convention for the short form of UDP notation, such that meantone's Ionian mode can simply be stated 5|1 instead of 5|1(1).&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="The Chroma-Aligned Generator"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;The Chroma-Aligned Generator&lt;/h1&gt;
&lt;br /&gt;
When the period is greater than one, &amp;quot;u&amp;quot; and &amp;quot;d&amp;quot; should be taken to represent the total number of generators up and down per &lt;strong&gt;equivalence interval&lt;/strong&gt;, not per period. For example, Paul Erlich's &amp;quot;Static Symmetrical Major&amp;quot; scale is 2 2 3 2 2 2 2 3 2 2; this is notated 4|4(2). This has the handy property of u+d+p = the total number of notes in the scale. For example, 4+4+2 = 10, which tells us that Static Symmetrical Major is a decatonic scale.&lt;br /&gt;
&lt;br /&gt;
Accidentals can follow the UDP string so as to specify a MODMOS. For example, in meantone[7], 5|1 b6 specifies harmonic major, and in porcupine[7], 6|0 b4 #7 specifies the 5-limit JI major scale.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="The Chroma-Aligned Generator"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;The Chroma-Aligned Generator&lt;/h1&gt;
  In general, any MOS scale is formed by stacking repeated instances of a generator on top of itself until one arrives at the desired MOS. The modes of this MOS will differ in how many generators you stack in the &amp;quot;up&amp;quot; direction, and how many you stack in the &amp;quot;down&amp;quot; direction.&lt;br /&gt;
  In general, any MOS scale is formed by stacking repeated instances of a generator on top of itself until one arrives at the desired MOS. The modes of this MOS will differ in how many generators you stack in the &amp;quot;up&amp;quot; direction, and how many you stack in the &amp;quot;down&amp;quot; direction.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 107: Line 195:
&lt;br /&gt;
&lt;br /&gt;
It should be noted that the chroma-aligned generator will change depending on which MOS of the temperament you're working within. For example, the chroma-aligned generator for mavila[7] is the 4/3, but for mavila[9] it's the 3/2.&lt;br /&gt;
It should be noted that the chroma-aligned generator will change depending on which MOS of the temperament you're working within. For example, the chroma-aligned generator for mavila[7] is the 4/3, but for mavila[9] it's the 3/2.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Definition&lt;/h1&gt;
The UDP notation for any mode is U|D(P), where &amp;quot;u&amp;quot; specifies the number of chroma-aligned generators &amp;quot;up,&amp;quot; d specifies the number of chroma-aligned generators &amp;quot;down,&amp;quot; and p specifies the number of periods per equivalence interval. The chroma-aligned generator is the one such that more generators &amp;quot;up&amp;quot; also means more &amp;quot;major&amp;quot; scale degrees, or more generally, more &amp;quot;large&amp;quot; intervals that contain the root of the scale.&lt;br /&gt;
&lt;br /&gt;
When the period is one, the (p) can be left off by convention for the short form of UDP notation, such that meantone's Ionian mode can simply be stated 5|1 instead of 5|1(1).&lt;br /&gt;
&lt;br /&gt;
When the period is greater than one, &amp;quot;u&amp;quot; and &amp;quot;d&amp;quot; should be taken to represent the total number of generators up and down per &lt;strong&gt;equivalence interval&lt;/strong&gt;, not per period. For example, Paul Erlich's &amp;quot;Static Symmetrical Major&amp;quot; scale is 2 2 3 2 2 2 2 3 2 2; this is notated 4|4(2). This has the handy property of u+d+p = the total number of notes in the scale. For example, 4+4+2 = 10, which tells us that Static Symmetrical Major is a decatonic scale.&lt;br /&gt;
&lt;br /&gt;
Accidentals can follow the UDP string so as to specify a MODMOS. For example, in meantone[7], 5|1 b6 specifies harmonic major, and in porcupine[7], 6|0 b4 #7 specifies the 5-limit JI major scale.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Rationale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Rationale&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Rationale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Rationale&lt;/h1&gt;
Line 119: Line 215:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Examples&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Examples&lt;/h1&gt;
  &lt;ul&gt;&lt;li&gt;Meantone[7] Ionian, LLsLLLs: 5|1&lt;/li&gt;&lt;li&gt;Meantone[7] Aeolian, LsLLsLL: 2|4&lt;/li&gt;&lt;li&gt;Mavila[7] Anti-Ionian, ssLsssL: 1|5&lt;/li&gt;&lt;li&gt;Mavila[7] Anti-Aeolian, Herman Miller's sLssLss mode: 4|2&lt;/li&gt;&lt;li&gt;Porcupine[7] Lssssss: 6|0&lt;/li&gt;&lt;li&gt;Porcupine[7] Lssssss mode, but altered with 7/4 instead of 11/6: 6|0 b7&lt;/li&gt;&lt;li&gt;Porcupine[7] sssLsss: 3|3&lt;/li&gt;&lt;li&gt;Diminished[8] sLsLsLsL 0|4(4)&lt;/li&gt;&lt;li&gt;Diminished[8] LsLsLsLs 4|0(4)&lt;/li&gt;&lt;li&gt;Triforce[9] LLsLLsLLs: 6|0(3)&lt;/li&gt;&lt;li&gt;Meantone[5] minor pentatonic, LssLs: 3|1&lt;/li&gt;&lt;li&gt;Meantone[5] major pentatonic, ssLsL: 0|4&lt;/li&gt;&lt;li&gt;Sensi[11] LLsLLLsLLLs: 8|2&lt;/li&gt;&lt;li&gt;Pajara[10] Static Symmetrical Major, ssLssssLss: 4|4(2)&lt;/li&gt;&lt;li&gt;Pajara[10] Standard Pentachordal Major, ssLsssLsss: 4|4(2) #8, 6|2(2) b3&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
  &lt;ul&gt;&lt;li&gt;Meantone[7] Ionian, LLsLLLs: 5|1&lt;/li&gt;&lt;li&gt;Meantone[7] Aeolian, LsLLsLL: 2|4&lt;/li&gt;&lt;li&gt;Mavila[7] Anti-Ionian, ssLsssL: 1|5&lt;/li&gt;&lt;li&gt;Mavila[7] Anti-Aeolian, Herman Miller's sLssLss mode: 4|2&lt;/li&gt;&lt;li&gt;Porcupine[7] Lssssss: 6|0&lt;/li&gt;&lt;li&gt;Porcupine[7] Lssssss mode, but altered with 7/4 instead of 11/6: 6|0 b7&lt;/li&gt;&lt;li&gt;Porcupine[7] sssLsss: 3|3&lt;/li&gt;&lt;li&gt;Diminished[8] sLsLsLsL 0|4(4)&lt;/li&gt;&lt;li&gt;Diminished[8] LsLsLsLs 4|0(4)&lt;/li&gt;&lt;li&gt;Triforce[9] LLsLLsLLs: 6|0(3)&lt;/li&gt;&lt;li&gt;Meantone[5] minor pentatonic, LssLs: 3|1&lt;/li&gt;&lt;li&gt;Meantone[5] major pentatonic, ssLsL: 0|4&lt;/li&gt;&lt;li&gt;Sensi[11] LLsLLLsLLLs: 8|2&lt;/li&gt;&lt;li&gt;Pajara[10] Static Symmetrical Major, ssLssssLss: 4|4(2)&lt;/li&gt;&lt;li&gt;Pajara[10] Standard Pentachordal Major, ssLsssLsss: 4|4(2) #8, 6|2(2) b3&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;Meantone[7]'s ionian mode is 5|1(1), abbreviated 5|1 for short.&lt;/li&gt;&lt;li&gt;Melodic minor is 5|1(1) b3, abbreviated 5|1 b3 for short, but could also be 3|3(1) #7, abbreviated 3|3 #7 for short.&lt;/li&gt;&lt;li&gt;Paul Erlich's standard pentachordal major is 4|4(2) #8, or alternatively 6|2(2) b3.&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
Retrieved from "https://en.xen.wiki/w/UDP"