UDP: Difference between revisions
Wikispaces>mbattaglia1 **Imported revision 279063540 - Original comment: ** |
Wikispaces>mbattaglia1 **Imported revision 279064020 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2011-11-25 15: | : This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2011-11-25 15:49:14 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>279064020</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 35: | Line 35: | ||
=Examples= | =Examples= | ||
For example, the proper generator for meantone[7] is the perfect fifth, because it's larger than the other specific interval it shares a class with, the diminished fifth. Consequentially, meantone[7]'s Ionian mode is 5|1(1), which is 5|1 for short, and Aeolian is 2|4. We can add accidentals as well, so that meantone's harmonic minor is 2|4 #7. | For example, the proper generator for meantone[7] is the perfect fifth, because it's larger than the other specific interval it shares a class with, the diminished fifth. Consequentially, meantone[7]'s Ionian mode is 5|1(1), which is 5|1 for short, because it contains five chroma-positive generators up from the root and one down, as in the diagram F-[C]-G-D-A-E-B for C ionian. This also means it has five "sharper" scale degrees - the second, third, fifth, sixth, and seventh - and one "flatter" scale degree - the fourth. If we want to sharpen the fourth to turn it into an augmented fourth, we arrive at 6|0 or [C]-G-D-A-E-B-F#. Conversely, Aeolian mode, with only two sharp scale degrees - the second and fifth - is 2|4. We can add accidentals as well, so that meantone's harmonic minor is 2|4 #7. | ||
The chroma-positive generator for porcupine[7] is the larger 7th, which is about ~11/6; as a consequence, porcupine[7]'s Lssssss mode is 6|0, and sssLsss is 3|3. Likewise, mavila[7]'s ssLsssL anti-Ionian is 1|5, and Mavila[9]'s LLsLLLsLL "Olympian" mode is 4|4. | |||
It should be noted that the chroma-positive generator will vary from MOS to MOS even within the same temperament. For example, the chroma-positive generator for meantone[7] is the ~3/2, but is the ~4/3 for meantone[5]. | It should be noted that the chroma-positive generator will vary from MOS to MOS even within the same temperament. For example, the chroma-positive generator for meantone[7] is the ~3/2, but is the ~4/3 for meantone[5]. | ||
Line 92: | Line 92: | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Examples"></a><!-- ws:end:WikiTextHeadingRule:6 -->Examples</h1> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Examples"></a><!-- ws:end:WikiTextHeadingRule:6 -->Examples</h1> | ||
<br /> | <br /> | ||
For example, the proper generator for meantone[7] is the perfect fifth, because it's larger than the other specific interval it shares a class with, the diminished fifth. Consequentially, meantone[7]'s Ionian mode is 5|1(1), which is 5|1 for short, and Aeolian is 2|4. We can add accidentals as well, so that meantone's harmonic minor is 2|4 #7.<br /> | For example, the proper generator for meantone[7] is the perfect fifth, because it's larger than the other specific interval it shares a class with, the diminished fifth. Consequentially, meantone[7]'s Ionian mode is 5|1(1), which is 5|1 for short, because it contains five chroma-positive generators up from the root and one down, as in the diagram F-[C]-G-D-A-E-B for C ionian. This also means it has five &quot;sharper&quot; scale degrees - the second, third, fifth, sixth, and seventh - and one &quot;flatter&quot; scale degree - the fourth. If we want to sharpen the fourth to turn it into an augmented fourth, we arrive at 6|0 or [C]-G-D-A-E-B-F#. Conversely, Aeolian mode, with only two sharp scale degrees - the second and fifth - is 2|4. We can add accidentals as well, so that meantone's harmonic minor is 2|4 #7.<br /> | ||
<br /> | <br /> | ||
The chroma-positive generator for porcupine[7] is the larger 7th, which is about ~11/6; as a consequence, porcupine[7]'s Lssssss mode is 6|0, and sssLsss is 3|3. Likewise, mavila[7]'s ssLsssL anti-Ionian is 1|5, and Mavila[9]'s LLsLLLsLL &quot;Olympian&quot; mode is 4|4.<br /> | |||
<br /> | <br /> | ||
It should be noted that the chroma-positive generator will vary from MOS to MOS even within the same temperament. For example, the chroma-positive generator for meantone[7] is the ~3/2, but is the ~4/3 for meantone[5].<br /> | It should be noted that the chroma-positive generator will vary from MOS to MOS even within the same temperament. For example, the chroma-positive generator for meantone[7] is the ~3/2, but is the ~4/3 for meantone[5].<br /> |