Minimal consistent EDOs: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 603198796 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 603231544 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2017-01-06 12:33:52 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2017-01-07 11:24:07 UTC</tt>.<br>
: The original revision id was <tt>603198796</tt>.<br>
: The original revision id was <tt>603231544</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">An edo N is //consistent// with respect to a set of rational numbers s if the [[patent val]] mapping of every element of s is the nearest N-edo approximation. It is //uniquely consistent// if every element of s is mapped to a unique value. If the set s is the q [[odd limit]], we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of the least consistent,  and least uniquely consistent, edo for every odd number up to 135.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">An [[edo]] N is //consistent// with respect to a set of rational numbers s if the [[patent val]] mapping of every element of s is the nearest N-edo approximation. It is //uniquely consistent// if every element of s is mapped to a unique value. If the set s is the q [[odd limit]], we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of the least consistent,  and least uniquely consistent, edo for every odd number up to 135.


|| Odd limit || Smallest consistent || Smallest uniquely consistent ||
|| Odd limit || Smallest consistent || Smallest uniquely consistent ||
Line 76: Line 76:
|| 133 || 70910024.|| 70910024.||
|| 133 || 70910024.|| 70910024.||
|| 135 || 70910024.|| 70910024.||
|| 135 || 70910024.|| 70910024.||
</pre></div>
 
**Links**
 
[[http://oeis.org/A116474]]
[[http://oeis.org/A116475]]
[[http://oeis.org/A117577]]
[[http://oeis.org/A117578]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Minimal consistent EDOs&lt;/title&gt;&lt;/head&gt;&lt;body&gt;An edo N is &lt;em&gt;consistent&lt;/em&gt; with respect to a set of rational numbers s if the &lt;a class="wiki_link" href="/patent%20val"&gt;patent val&lt;/a&gt; mapping of every element of s is the nearest N-edo approximation. It is &lt;em&gt;uniquely consistent&lt;/em&gt; if every element of s is mapped to a unique value. If the set s is the q &lt;a class="wiki_link" href="/odd%20limit"&gt;odd limit&lt;/a&gt;, we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of the least consistent,  and least uniquely consistent, edo for every odd number up to 135.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Minimal consistent EDOs&lt;/title&gt;&lt;/head&gt;&lt;body&gt;An &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt; N is &lt;em&gt;consistent&lt;/em&gt; with respect to a set of rational numbers s if the &lt;a class="wiki_link" href="/patent%20val"&gt;patent val&lt;/a&gt; mapping of every element of s is the nearest N-edo approximation. It is &lt;em&gt;uniquely consistent&lt;/em&gt; if every element of s is mapped to a unique value. If the set s is the q &lt;a class="wiki_link" href="/odd%20limit"&gt;odd limit&lt;/a&gt;, we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of the least consistent,  and least uniquely consistent, edo for every odd number up to 135.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;


Line 629: Line 635:
&lt;/table&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;br /&gt;
&lt;strong&gt;Links&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://oeis.org/A116474" rel="nofollow"&gt;http://oeis.org/A116474&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://oeis.org/A116475" rel="nofollow"&gt;http://oeis.org/A116475&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://oeis.org/A117577" rel="nofollow"&gt;http://oeis.org/A117577&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://oeis.org/A117578" rel="nofollow"&gt;http://oeis.org/A117578&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>