User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 5: | Line 5: | ||
= Title1 = | = Title1 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
54edo’s approximations of 3/1, 5/1, 7/1, 11/1, 13/1, 17/1, 19/1 and 23/1 are all improved by [[139ed6]], a [[Octave stretch|stretched-octave]] version of 54edo. The trade-off is a slightly worse 2/1 and 19/1. | |||
If one prefers a ''[[Octave shrinking|compressed-octave]]'' tuning instead, [[86edt]], [[126ed5]] and [[152ed7]] are possible choices. They improve upon 54edo’s 3/1, 5/1, 7/1 and 17/1, at the cost of its 2/1, 11/1 and 13/1. | |||
[[40ed5/3]] is another compressed octave option. It improves upon 54edo’s 3/1, 5/1, 11/1, 13/1, 17/1 and 19/1, at slight cost to the 2/1 and 7/1. Its 2/1 is the least accurate of all the tunings mentioned in this section, though still accurate enough that it has low [[harmonic entropy]]. | |||
What follows is a comparison of stretched- and compressed-octave 54edo tunings. | What follows is a comparison of stretched- and compressed-octave 54edo tunings. | ||
; [[ed6|139ed6]] | ; [[ed6|139ed6]] | ||
* | * Octave size: 1205.08{{c}} | ||
Stretching the octave of 54edo by around | Stretching the octave of 54edo by around 5{{c}} results in improved primes 3, 5, 7, 11, 13 and 17, but a worse prime 2. This approximates all harmonics up to 16 within 10.15{{c}}. The tuning 139ed6 does this. So does the tuning 262zpi whose octave is identical to 139ed6 within 0.2{{c}}. | ||
{{Harmonics in equal|139|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 139ed6}} | {{Harmonics in equal|139|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 139ed6}} | ||
{{Harmonics in equal|139|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 139ed6 (continued)}} | {{Harmonics in equal|139|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 139ed6 (continued)}} | ||
; [[ed7|151ed7]] | ; [[ed7|151ed7]] | ||
* | * Octave size: 1204.75{{c}} | ||
Stretching the octave of 54edo by around | Stretching the octave of 54edo by around 4.5{{c}} results in improved primes 3, 5, 7, 11, 13 and 17, but a worse prime 2. This approximates all harmonics up to 16 within 11.12{{c}}. The tuning 151ed7 does this. | ||
{{Harmonics in equal|151|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed7}} | {{Harmonics in equal|151|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed7}} | ||
{{Harmonics in equal|151|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed7 (continued)}} | {{Harmonics in equal|151|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed7 (continued)}} | ||
; [[ed12|193ed12]] | ; [[ed12|193ed12]] | ||
* | * Octave size: 1203.66{{c}} | ||
Stretching the octave of 54edo by around | Stretching the octave of 54edo by around 3.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but worse primes 2 and 11. This approximates all harmonics up to 16 within 10.97{{c}}. The tuning 193ed12 does this. | ||
{{Harmonics in equal|193|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 193ed12}} | {{Harmonics in equal|193|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 193ed12}} | ||
{{Harmonics in equal|193|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 193ed12 (continued)}} | {{Harmonics in equal|193|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 193ed12 (continued)}} | ||
; [[zpi|263zpi]] | ; [[zpi|263zpi]] | ||
* Step size: 22.243{{c}}, octave size: | * Step size: 22.243{{c}}, octave size: 1201.12{{c}} | ||
Stretching the octave of 54edo by around | Stretching the octave of 54edo by around 1{{c}} results in an improved prime 5, but worse primes 2, 3, 7, 11 and 13. This approximates all harmonics up to 16 within 10.94{{c}}. The tuning 263zpi does this. | ||
{{Harmonics in cet|22.243|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 263zpi}} | {{Harmonics in cet|22.243|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 263zpi}} | ||
{{Harmonics in cet|22.243|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 263zpi (continued)}} | {{Harmonics in cet|22.243|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 263zpi (continued)}} | ||
; 54edo | ; 54edo | ||
* Step size: 22.222{{c}}, octave size: | * Step size: 22.222{{c}}, octave size: 1200.00{{c}} | ||
Pure-octaves 54edo approximates all harmonics up to 16 within | Pure-octaves 54edo approximates all harmonics up to 16 within 9.16{{c}}. | ||
{{Harmonics in equal|54|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54edo}} | {{Harmonics in equal|54|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54edo}} | ||
{{Harmonics in equal|54|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54edo (continued)}} | {{Harmonics in equal|54|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54edo (continued)}} | ||
; [[WE|54et, 13-limit WE tuning]] | ; [[WE|54et, 13-limit WE tuning]] | ||
* Step size: 22.198{{c}}, octave size: | * Step size: 22.198{{c}}, octave size: 1198.69{{c}} | ||
Compressing the octave of 54edo by around | Compressing the octave of 54edo by around 1.5{{c}} results in improved primes 3, 7, 11, 13, 17 and 19, but worse primes 2 and 5. This approximates all harmonics up to 16 within 10.63{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. So does the tuning [[equal tuning|187ed11]] whose octave is identical to 13lim WE within 0.1{{c}}. | ||
{{Harmonics in cet|22.198|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning}} | {{Harmonics in cet|22.198|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning}} | ||
{{Harmonics in cet|22.198|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning (continued)}} | {{Harmonics in cet|22.198|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning (continued)}} | ||
; [[zpi|264zpi]] | ; [[zpi|264zpi]] | ||
* Step size: 22.175{{c}}, octave size: | * Step size: 22.175{{c}}, octave size: 1197.45{{c}} | ||
Compressing the octave of 54edo by around | Compressing the octave of 54edo by around 2.5{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.19{{c}}. The tuning 264zpi does this. So does the tuning 194ed12 whose octave is identical to 264zpi within 0.01{{c}}. | ||
{{Harmonics in cet|22.175|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 264zpi}} | {{Harmonics in cet|22.175|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 264zpi}} | ||
{{Harmonics in cet|22.175|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 264zpi (continued)}} | {{Harmonics in cet|22.175|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 264zpi (continued)}} | ||
; [[ed7|152ed7]] | ; [[ed7|152ed7]] | ||
* | * Octave size: 1196.82{{c}} | ||
Compressing the octave of 54edo by around | Compressing the octave of 54edo by around 3{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.36{{c}}. The tuning 152ed7 does this. | ||
{{Harmonics in equal|152|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 152ed7}} | {{Harmonics in equal|152|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 152ed7}} | ||
{{Harmonics in equal|152|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 152ed7 (continued)}} | {{Harmonics in equal|152|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 152ed7 (continued)}} | ||
; [[ed6|140ed6]] | ; [[ed6|140ed6]] | ||
* | * Octave size: 1196.47{{c}} | ||
Compressing the octave of 54edo by around | Compressing the octave of 54edo by around 3.5{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.59{{c}}. The tuning 140ed6 does this. | ||
{{Harmonics in equal|140|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 140ed6}} | {{Harmonics in equal|140|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 140ed6}} | ||
{{Harmonics in equal|140|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 140ed6 (continued)}} | {{Harmonics in equal|140|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 140ed6 (continued)}} | ||
; [[ed5|126ed5]] | ; [[ed5|126ed5]] | ||
* | * Octave size: 1194.13{{c}} | ||
Compressing the octave of 54edo by around | Compressing the octave of 54edo by around 6{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.20{{c}}. The tuning 126ed5 does this. So does the tuning [[86edt]] whose octave is identical to 126ed5 within 0.1{{c}}. | ||
{{Harmonics in equal|126|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 126ed5}} | |||
{{Harmonics in equal|126|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 126ed5 (continued)}} | |||
; [[ed5/3|40ed5/3]] | |||
* Octave size: 1194.13{{c}} | |||
Compressing the octave of 54edo by around 6{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.20{{c}}. The tuning 126ed5 does this. So does the tuning [[86edt]] whose octave is identical to 126ed5 within 0.1{{c}}. | |||
{{Harmonics in equal|126|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 126ed5}} | {{Harmonics in equal|126|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 126ed5}} | ||
{{Harmonics in equal|126|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 126ed5 (continued)}} | {{Harmonics in equal|126|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 126ed5 (continued)}} |