|
|
Line 5: |
Line 5: |
| = Title1 = | | = Title1 = |
| == Octave stretch or compression == | | == Octave stretch or compression == |
| What follows is a comparison of stretched- and compressed-octave 42edo tunings. | | What follows is a comparison of stretched- and compressed-octave EDONAME tunings. |
|
| |
|
| ; [[ed6|108ed6]] | | ; [[zpi|ZPINAME]] |
| * Step size: NNN{{c}}, octave size: 1206.3{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of 42edo by around 6{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 108ed6 does this. So does the tuning [[97ed5]] whose octave differs by only 0.1{{c}}.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. |
| {{Harmonics in equal|108|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 108ed6}} | | {{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} |
| {{Harmonics in equal|108|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 108ed6 (continued)}} | | {{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} |
|
| |
|
| ; [[zpi|189zpi]] | | ; [[EDONOI]] |
| * Step size: 28.689{{c}}, octave size: 1204.9{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 189zpi does this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| {{Harmonics in cet|28.689|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 189zpi}} | | {{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| {{Harmonics in cet|28.689|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 189zpi (continued)}} | | {{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| ; [[ed12|150ed12]] | | ; [[WE|ETNAME, SUBGROUP WE tuning]] |
| * Step size: NNN{{c}}, octave size: 1204.5{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretcing the octave of 42edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 150ed12 does this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. |
| {{Harmonics in equal|150|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed12}} | | {{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} |
| {{Harmonics in equal|150|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed12 (continued)}} | | {{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} |
|
| |
|
| ; [[equal tuning|145ed11]] | | ; EDONAME |
| * Step size: NNN{{c}}, octave size: 1202.5{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of 42edo by around 2.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 145ed11 does this.
| | Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. |
| {{Harmonics in equal|145|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 145ed11}} | | {{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}} |
| {{Harmonics in equal|145|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 145ed11 (continued)}} | | {{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} |
|
| |
|
| ; 42edo | | ; [[WE|ETNAME, SUBGROUP WE tuning]] |
| * Step size: NNN{{c}}, octave size: 1200.0{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Pure-octaves 42edo approximates all harmonics up to 16 within NNN{{c}}. The tuning [[zpi|190zpi]] is almost exactly the same as pure-octaves 42edo, its octave differing by less than 0.05{{c}}.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. |
| {{Harmonics in equal|42|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42edo}} | | {{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} |
| {{Harmonics in equal|42|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42edo (continued)}} | | {{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} |
|
| |
|
| ; [[ed7|118ed7]] | | ; [[EDONOI]] |
| * Step size: NNN{{c}}, octave size: 1199.1{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Compressing the octave of 42edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 118ed7 does this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| {{Harmonics in equal|118|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 118ed7}} | | {{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| {{Harmonics in equal|118|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 118ed7 (continued)}} | | {{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| ; [[WE|42et, 13-limit WE tuning]] | | ; [[zpi|ZPINAME]] |
| * Step size: 28.534{{c}}, octave size: 1198.4{{c}}
| | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Compressing the octave of 42edo by around 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. |
| {{Harmonics in cet|28.534|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning}}
| | {{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} |
| {{Harmonics in cet|28.534|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning (continued)}}
| | {{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} |
| | |
| ; [[ed12|151ed12]]
| |
| * Step size: NNN{{c}}, octave size: 1196.6{{c}} | |
| Compressing the octave of 42edo by around 3.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 151ed12 does this. So do the 7-limit [[WE]] and [[TE]] tunings of 42et, whose octaves are within 0.3{{c}} of 151ed12.
| |
| {{Harmonics in equal|151|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed12}}
| |
| {{Harmonics in equal|151|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed12 (continued)}}
| |
| | |
| ; [[ed6|109ed6]]
| |
| * Step size: NNN{{c}}, octave size: 1195.2{{c}}
| |
| Compressing the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 109ed6 does this.
| |
| {{Harmonics in equal|109|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 109ed6}}
| |
| {{Harmonics in equal|109|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 109ed6 (continued)}}
| |
| | |
| ; [[zpi|191zpi]]
| |
| * Step size: 28.444{{c}}, octave size: 1194.6{{c}}
| |
| Compressing the octave of 42edo by around 5.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 191zpi does this.
| |
| {{Harmonics in cet|28.444|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 191zpi}} | |
| {{Harmonics in cet|28.444|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 191zpi (continued)}} | |
| | |
| ; [[67edt]]
| |
| * Step size: NNN{{c}}, octave size: 1192.3{{c}}
| |
| Compressing the octave of 42edo by around 7.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 67edt does this.
| |
| {{Harmonics in equal|67|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 67edt}}
| |
| {{Harmonics in equal|67|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 67edt (continued)}}
| |
|
| |
|
| = Title2 = | | = Title2 = |