User:BudjarnLambeth/Sandbox2: Difference between revisions
mNo edit summary |
|||
Line 7: | Line 7: | ||
What follows is a comparison of stretched- and compressed-octave 42edo tunings. | What follows is a comparison of stretched- and compressed-octave 42edo tunings. | ||
; [[108ed6]] | ; [[ed6|108ed6]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1206.3{{c}} | ||
Stretching the octave of 42edo by around 6{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 108ed6 does this. So does the tuning [[97ed5]] whose octave differs by only 0.1{{c}}. | |||
{{Harmonics in equal|108|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 108ed6}} | {{Harmonics in equal|108|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 108ed6}} | ||
{{Harmonics in equal|108|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 108ed6 (continued)}} | {{Harmonics in equal|108|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 108ed6 (continued)}} | ||
; [[zpi|189zpi]] | ; [[zpi|189zpi]] | ||
* Step size: 28.689{{c}}, octave size: | * Step size: 28.689{{c}}, octave size: 1204.9{{c}} | ||
Stretching the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 189zpi does this. | |||
{{Harmonics in cet|28.689|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 189zpi}} | {{Harmonics in cet|28.689|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 189zpi}} | ||
{{Harmonics in cet|28.689|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 189zpi (continued)}} | {{Harmonics in cet|28.689|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 189zpi (continued)}} | ||
; [[150ed12]] | ; [[ed12|150ed12]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1204.5{{c}} | ||
Stretcing the octave of 42edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 150ed12 does this. | |||
{{Harmonics in equal|150|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed12}} | {{Harmonics in equal|150|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed12}} | ||
{{Harmonics in equal|150|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed12 (continued)}} | {{Harmonics in equal|150|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed12 (continued)}} | ||
Line 27: | Line 27: | ||
; [[equal tuning|145ed11]] | ; [[equal tuning|145ed11]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 42edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 145ed11 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|145|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 145ed11}} | ||
{{Harmonics in equal| | {{Harmonics in equal|145|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 145ed11 (continued)}} | ||
; 42edo | ; 42edo | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves 42edo approximates all harmonics up to 16 within NNN{{c}}. The tuning [[zpi|190zpi]] is almost exactly the same as pure-octaves 42edo, its octave differing by less than 0.05{{c}}. | Pure-octaves 42edo approximates all harmonics up to 16 within NNN{{c}}. The tuning [[zpi|190zpi]] is almost exactly the same as pure-octaves 42edo, its octave differing by less than 0.05{{c}}. | ||
{{Harmonics in equal|42|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42edo}} | {{Harmonics in equal|42|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42edo}} | ||
{{Harmonics in equal|42|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42edo (continued)}} | {{Harmonics in equal|42|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42edo (continued)}} | ||
; [[118ed7]] | ; [[ed7|118ed7]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1199.1{{c}} | ||
Compressing the octave of 42edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 118ed7 does this. | |||
{{Harmonics in equal|118|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 118ed7}} | {{Harmonics in equal|118|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 118ed7}} | ||
{{Harmonics in equal|118|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 118ed7 (continued)}} | {{Harmonics in equal|118|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 118ed7 (continued)}} | ||
; [[WE|42et, 13-limit WE tuning]] | ; [[WE|42et, 13-limit WE tuning]] | ||
* Step size: 28.534{{c}}, octave size: | * Step size: 28.534{{c}}, octave size: 1198.4{{c}} | ||
Compressing the octave of 42edo by around 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|28.534|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning}} | {{Harmonics in cet|28.534|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning}} | ||
{{Harmonics in cet|28.534|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning (continued)}} | {{Harmonics in cet|28.534|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning (continued)}} | ||
; [[151ed12]] | ; [[ed12|151ed12]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 42edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. So do the 7-limit [[WE]] and [[TE]] tunings of 42et, whose octaves are within 0.3{{c}} of 151ed12. | |||
{{Harmonics in equal|12 | {{Harmonics in equal|151|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed12}} | ||
{{Harmonics in equal|12 | {{Harmonics in equal|151|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed12 (continued)}} | ||
; [[109ed6]] | ; [[ed6|109ed6]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1195.2{{c}} | ||
Compressing the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 109ed6 does this. | |||
{{Harmonics in equal|109|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 109ed6}} | {{Harmonics in equal|109|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 109ed6}} | ||
{{Harmonics in equal|109|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 109ed6 (continued)}} | {{Harmonics in equal|109|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 109ed6 (continued)}} | ||
; [[zpi|191zpi]] | ; [[zpi|191zpi]] | ||
* Step size: 28.444{{c}}, octave size: | * Step size: 28.444{{c}}, octave size: 1194.6{{c}} | ||
Compressing the octave of 42edo by around 5.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 191zpi does this. | |||
{{Harmonics in cet|28.444|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 191zpi}} | {{Harmonics in cet|28.444|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 191zpi}} | ||
{{Harmonics in cet|28.444|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 191zpi (continued)}} | {{Harmonics in cet|28.444|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 191zpi (continued)}} | ||
; [[67edt]] | ; [[67edt]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1192.3{{c}} | ||
Compressing the octave of 42edo by around 7.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 67edt does this. | |||
{{Harmonics in equal|67|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 67edt}} | {{Harmonics in equal|67|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 67edt}} | ||
{{Harmonics in equal|67|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 67edt (continued)}} | {{Harmonics in equal|67|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 67edt (continued)}} |