User:BudjarnLambeth/Sandbox2: Difference between revisions
m →Title1 |
|||
Line 3: | Line 3: | ||
[[User:BudjarnLambeth/Draft related tunings section]] | [[User:BudjarnLambeth/Draft related tunings section]] | ||
= | == Octave stretch and compression == | ||
; [[zpi|209zpi]] | ; [[zpi|209zpi]] | ||
* Step size: 26.550{{c}}, octave size: | * Step size: 26.550{{c}}, octave size: 1194.8{{c}} | ||
Compressing the octave of 45edo by around 5{{c}} results in improved primes 5 and 7, but worse primes 2, 3, 11 and 13. This approximates all harmonics up to 16 within 11.1{{c}}. The tuning 209zpi does this. | |||
{{Harmonics in cet|26.550|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.550|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 209zpi}} | ||
{{Harmonics in cet|26.550|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.550|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 209zpi (continued)}} | ||
; 45edo | ; 45edo | ||
* Step size: 26.667{{c}}, octave size: | * Step size: 26.667{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves | Pure-octaves 45edo approximates all harmonics up to 16 within 13.0{{c}}. | ||
{{Harmonics in equal|45|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|45|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 45edo}} | ||
{{Harmonics in equal|45|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|45|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 45edo (continued)}} | ||
; [[WE| | ; [[WE|45et, 13-limit WE tuning]] | ||
* Step size: 26.695{{c}}, octave size: | * Step size: 26.695{{c}}, octave size: 1201.3{{c}} | ||
Stretching the octave of 45edo by around 1{{c}} results in improved primes 3, 5, 7 and 13, but worse primes 2 and 11. This approximates all harmonics up to 16 within 13.2{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|26.695|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.695|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 45et, 13-limit WE tuning}} | ||
{{Harmonics in cet|26.695|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.695|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 45et, 13-limit WE tuning (continued)}} | ||
; [[161ed12]] | ; [[161ed12]] | ||
* Step size: | * Step size: Octave size: 1202.4{{c}} | ||
Stretching the octave of 45edo by around 2.5{{c}} results in improved primes 3, 5, 7 and 13, but worse primes 2 and 11. This approximates all harmonics up to 16 within 12.2{{c}}. The tuning 161ed12 does this. | |||
{{Harmonics in equal|161|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|161|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 161ed12}} | ||
{{Harmonics in equal|161|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|161|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 161ed12 (continued)}} | ||
; [[116ed6]] | ; [[116ed6]] | ||
* Step size: | * Step size: Octave size: 1203.3{{c}} | ||
Stretching the octave of 45edo by around 3{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 13.4{{c}}. The tuning 116ed6 does this. So does [[ed7|126ed7]] whose octave is identical within 0.1{{c}}. | |||
{{Harmonics in equal|116|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|116|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 116ed6}} | ||
{{Harmonics in equal|116|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|116|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 116ed6 (continued)}} | ||
; [[WE|45et, 7-limit WE tuning]] | ; [[WE|45et, 7-limit WE tuning]] | ||
* Step size: 26.745{{c}}, octave size: | * Step size: 26.745{{c}}, octave size: 1203.5{{c}} | ||
Stretching the octave of 45edo by around 3.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 12.6{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|26.745|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.745|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 45et, 7-limit WE tuning}} | ||
{{Harmonics in cet|26.745|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.745|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 45et, 7-limit WE tuning (continued)}} | ||
; [[zpi|207zpi]] | ; [[zpi|207zpi]] | ||
* Step size: 26.762{{c}}, octave size: | * Step size: 26.762{{c}}, octave size: 1204.3{{c}} | ||
Stretching the octave of 45edo by around 4{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 12.9{{c}}. The tuning 207zpi does this. | |||
{{Harmonics in cet|26.762|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.762|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 207zpi}} | ||
{{Harmonics in cet|26.762|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|26.762|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 207zpi (continued)}} | ||
; [[71edt]] | ; [[71edt]] | ||
* Step size: | * Step size: 26.788{{c}}, octave size: 1205.5{{c}} | ||
Stretching the octave of 45edo by around 5.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 11.9{{c}}. The tuning 71edt does this. So does the tuning [[equal tuning|155ed11]] whose octave is identical within 0.3{{c}}. | |||
{{Harmonics in equal|71|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|71|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 71edt}} | ||
{{Harmonics in equal|71|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|71|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 71edt (continued)}} | ||
= Title2 = | = Title2 = |