User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 63: | Line 63: | ||
; [[APS|19.95cet]] | ; [[APS|19.95cet]] | ||
* Step size: 19.950{{c}}, octave size: 119n{{c}} | * Step size: 19.950{{c}}, octave size: 119n{{c}} | ||
Compressing the octave of 60edo by around nnn{{c}} results in improved primes 5, 7 and 13, but worse primes 2, 3 and 11. This approximates all harmonics up to 16 within | Compressing the octave of 60edo by around nnn{{c}} results in improved primes 5, 7 and 13, but worse primes 2, 3 and 11. This approximates all harmonics up to 16 within nnn{{c}}. The tuning 19.95cet does this. | ||
{{Harmonics in cet|19.95|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 19.95cet}} | {{Harmonics in cet|19.95|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 19.95cet}} | ||
{{Harmonics in cet|19.95|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 19.95cet (continued)}} | {{Harmonics in cet|19.95|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 19.95cet (continued)}} | ||
; [[25ed4/3|25ed4/3]] | |||
* Step size: nnn{{c}}, octave size: nnn{{c}} | |||
Compressing the octave of 60edo by around nnn{{c}} results in improved primes 5, 7 and 13, but worse primes 2, 3 and 11. This approximates all harmonics up to 16 within nnn{{c}}. The tuning 25ed4/3 does this. | |||
{{Harmonics in equal|169|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 169ed7}} | |||
{{Harmonics in equal|169|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 169ed7 (continued)}} | |||
; [[APS|19.94cet]] | ; [[APS|19.94cet]] | ||
* Step size: 19.940{{c}}, octave size: 119n{{c}} | * Step size: 19.940{{c}}, octave size: 119n{{c}} | ||
Compressing the octave of 60edo by around nnn{{c}} results in improved primes 5, 7 and 13, but worse primes 2, 3 and 11. This approximates all harmonics up to 16 within | Compressing the octave of 60edo by around nnn{{c}} results in improved primes 5, 7 and 13, but worse primes 2, 3 and 11. This approximates all harmonics up to 16 within nnn{{c}}. The tuning 19.94cet does this. | ||
{{Harmonics in cet|19.94|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 19.94cet}} | {{Harmonics in cet|19.94|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 19.94cet}} | ||
{{Harmonics in cet|19.94|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 19.94cet (continued)}} | {{Harmonics in cet|19.94|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 19.94cet (continued)}} |