User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 22: | Line 22: | ||
; [[60ed6]] | ; [[60ed6]] | ||
* Step size: | * Step size: 51.700{{c}}, octave size: 1189.1{{c}} | ||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | {{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
{{Harmonics in equal|105|23|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
; [[zpi|85zpi]] | ; [[zpi|85zpi]] | ||
Line 32: | Line 33: | ||
{{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | {{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | {{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | ||
{{Harmonics in equal|73|9|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
; 23edo | ; 23edo | ||
Line 50: | Line 52: | ||
{{Harmonics in cet|52.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | {{Harmonics in cet|52.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | ||
{{Harmonics in cet|52.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | {{Harmonics in cet|52.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | ||
{{Harmonics in equal|76|10|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
; [[59ed6]] | ; [[59ed6]] | ||
* Step size: | * Step size: 52.575{{c}}, octave size: 1209.2{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | {{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
{{Harmonics in equal|53|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
; [[zpi|84zpi]] | ; [[zpi|84zpi]] | ||
Line 64: | Line 68: | ||
; [[36edt]] | ; [[36edt]] | ||
* Step size: | * Step size: 52.832{{c}}, octave size: 1215.1{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | {{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
; [[84ed13]] | |||
* Step size: 52.863{{c}}, octave size: 1215.9{{c}} | |||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in equal|84|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|84|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | |||
= Title2 = | = Title2 = |