User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 7: | Line 7: | ||
; [[zpi|567zpi]] | ; [[zpi|567zpi]] | ||
* Step size: 12.138{{c}}, octave size: 1201.66{{c}} | * Step size: 12.138{{c}}, octave size: 1201.66{{c}} | ||
Stretching the octave of 99edo by around 1.5{{c}} results in improved primes | Stretching the octave of 99edo by around 1.5{{c}} results in improved primes 11, 13, 17, and 19, but worse primes 2, 3, 5 and 7. This approximates all harmonics up to 16 within 5.54{{c}}. The tuning 567zpi does this. | ||
{{Harmonics in cet|12.138|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 567zpi}} | {{Harmonics in cet|12.138|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 567zpi}} | ||
{{Harmonics in cet|12.138|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 567zpi (continued)}} | {{Harmonics in cet|12.138|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 567zpi (continued)}} | ||
Line 13: | Line 13: | ||
; [[WE|99et, 13-limit WE tuning]] | ; [[WE|99et, 13-limit WE tuning]] | ||
* Step size: 12.123{{c}}, octave size: 1200.18{{c}} | * Step size: 12.123{{c}}, octave size: 1200.18{{c}} | ||
Stretching the octave of 99edo by around a fifth of a cent results in improved primes | Stretching the octave of 99edo by around a fifth of a cent results in improved primes 11 and 13, but worse primes 2, 3, 5 and 7. This approximates all harmonics up to 16 within 5.25{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | ||
{{Harmonics in cet|12.123|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 99et, 13-limit WE tuning}} | {{Harmonics in cet|12.123|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 99et, 13-limit WE tuning}} | ||
{{Harmonics in cet|12.123|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 99et, 13-limit WE tuning (continued)}} | {{Harmonics in cet|12.123|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 99et, 13-limit WE tuning (continued)}} | ||
Line 25: | Line 25: | ||
; [[WE|99et, 7-limit WE tuning]] / [[256ed6]] | ; [[WE|99et, 7-limit WE tuning]] / [[256ed6]] | ||
* Step size: 12.117{{c}}, octave size: 1199.58{{c}} | * Step size: 12.117{{c}}, octave size: 1199.58{{c}} | ||
Compressing the octave of 99edo by around 0.6{{c}} results in improved primes | Compressing the octave of 99edo by around 0.6{{c}} results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 5.71{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So does the tuning 256ed6 whose octave is identical within a thousandth of a cent. | ||
{{Harmonics in cet|12.117|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 99et, 7-limit WE tuning}} | {{Harmonics in cet|12.117|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 99et, 7-limit WE tuning}} | ||
{{Harmonics in cet|12.117|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 99et, 7-limit WE tuning (continued)}} | {{Harmonics in cet|12.117|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 99et, 7-limit WE tuning (continued)}} | ||
Line 31: | Line 31: | ||
; [[zpi|568zpi]] | ; [[zpi|568zpi]] | ||
* Step size: 12.115{{c}}, octave size: 1199.39{{c}} | * Step size: 12.115{{c}}, octave size: 1199.39{{c}} | ||
Compressing the octave of 99edo by around 0.4{{c}} results in improved primes | Compressing the octave of 99edo by around 0.4{{c}} results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 5.68{{c}}. The tuning 568zpi does this. | ||
{{Harmonics in cet|12.115|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 568zpi}} | {{Harmonics in cet|12.115|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 568zpi}} | ||
{{Harmonics in cet|12.115|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 568zpi (continued)}} | {{Harmonics in cet|12.115|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 568zpi (continued)}} | ||
Line 37: | Line 37: | ||
; [[157edt]] / [[ed5|230ed5]] | ; [[157edt]] / [[ed5|230ed5]] | ||
* Step size: 12.114{{c}}, octave size: 1199.32{{c}} | * Step size: 12.114{{c}}, octave size: 1199.32{{c}} | ||
Compressing the octave of 99edo by around 0.3{{c}} results in improved primes | Compressing the octave of 99edo by around 0.3{{c}} results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 5.44{{c}}. The tuning 157edt does this. So does 230ed5 whose octave is identical within a hundredth of a cent. | ||
{{Harmonics in equal|157|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 157edt}} | {{Harmonics in equal|157|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 157edt}} | ||
{{Harmonics in equal|157|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 157edt (continued)}} | {{Harmonics in equal|157|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 157edt (continued)}} |