User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 22: Line 22:
{{Harmonics in cet|85.842|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning}}
{{Harmonics in cet|85.842|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning}}
{{Harmonics in cet|85.842|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning (continued)}}
{{Harmonics in cet|85.842|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning (continued)}}
; [[36ed6]]
* Step size: 86.165{{c}}, octave size: 1206.3{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 36ed6 does this.
{{Harmonics in equal|36|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 36ed6}}
{{Harmonics in equal|36|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 36ed6 (continued)}}


; [[zpi|42zpi]]  
; [[zpi|42zpi]]  
Line 28: Line 34:
{{Harmonics in cet|86.329|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42zpi}}
{{Harmonics in cet|86.329|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42zpi}}
{{Harmonics in cet|86.329|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42zpi (continued)}}
{{Harmonics in cet|86.329|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42zpi (continued)}}
; [[36ed6]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 36ed6 does this.
{{Harmonics in equal|36|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 36ed6}}
{{Harmonics in equal|36|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 36ed6 (continued)}}


; [[22edt]]  
; [[22edt]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 86.453{{c}}, octave size: 1210.3{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 22edt does this.
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 22edt does this.
{{Harmonics in equal|22|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|22|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}