User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 22: | Line 22: | ||
{{Harmonics in cet|85.842|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning}} | {{Harmonics in cet|85.842|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning}} | ||
{{Harmonics in cet|85.842|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning (continued)}} | {{Harmonics in cet|85.842|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning (continued)}} | ||
; [[36ed6]] | |||
* Step size: 86.165{{c}}, octave size: 1206.3{{c}} | |||
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 36ed6 does this. | |||
{{Harmonics in equal|36|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 36ed6}} | |||
{{Harmonics in equal|36|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 36ed6 (continued)}} | |||
; [[zpi|42zpi]] | ; [[zpi|42zpi]] | ||
Line 28: | Line 34: | ||
{{Harmonics in cet|86.329|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42zpi}} | {{Harmonics in cet|86.329|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42zpi}} | ||
{{Harmonics in cet|86.329|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42zpi (continued)}} | {{Harmonics in cet|86.329|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42zpi (continued)}} | ||
; [[22edt]] | ; [[22edt]] | ||
* Step size: | * Step size: 86.453{{c}}, octave size: 1210.3{{c}} | ||
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 22edt does this. | Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 22edt does this. | ||
{{Harmonics in equal|22|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|22|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |