User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 12: | Line 12: | ||
; 72edo | ; 72edo | ||
* Step size: | * Step size: 16.667{{c}}, octave size: 1200.00{{c}} | ||
Pure-octaves 72edo approximates all harmonics up to 16 within NNN{{c}}. | Pure-octaves 72edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal|72|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|72|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 72edo}} | ||
{{Harmonics in equal|72|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|72|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 72edo (continued)}} | ||
; [[249ed11]] | |||
* Step size: NNN{{c}}, octave size: 1200.38{{c}} | |||
Stretching the octave of 72edo by around 0.4{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 249ed11 does this. | |||
{{Harmonics in equal|249|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 249ed11}} | |||
{{Harmonics in equal|249|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 249ed11 (continued)}} | |||
; [[258ed12]] | ; [[258ed12]] | ||
* Step size: NNN{{c}}, octave size: 1200.55{{c}} | * Step size: NNN{{c}}, octave size: 1200.55{{c}} | ||
Stretching the octave of 72edo by around | Stretching the octave of 72edo by around 0.5{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 258ed12 does this. | ||
{{Harmonics in equal|258|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|258|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 258ed12}} | ||
{{Harmonics in equal|258|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|258|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 258ed12 (continued)}} | ||
; [[186ed6]] / [[WE|72et, 11-limit WE tuning]] / [[202ed7]] | ; [[186ed6]] / [[WE|72et, 11-limit WE tuning]] / [[ed7|202ed7]] | ||
* Step size: NNN{{c}}, octave size: 1200.76{{c}} | * Step size: NNN{{c}}, octave size: 1200.76{{c}} | ||
Stretching the octave of 72edo by around | Stretching the octave of 72edo by around 0.75{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 186ed6 does this. 72et's 11-limit WE tuning and 11-limit [[TE]] tuning both do this, their octave differing from 186ed6's by only 0.02{{c}}. The tuning 202ed7 does this also, it's octave differing from 186ed6 by less than a hundredth of a cent. | ||
{{Harmonics in equal|186|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|186|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 186ed6}} | ||
{{Harmonics in equal|186|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|186|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 186ed6 (continued)}} | ||
; [[zpi|380zpi]] | ; [[zpi|380zpi]] | ||
* Step size: 16.678{{c}}, octave size: 1200.82{{c}} | * Step size: 16.678{{c}}, octave size: 1200.82{{c}} | ||
Stretching the octave of 72edo by around | Stretching the octave of 72edo by around 0.8{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 380zpi does this. | ||
{{Harmonics in cet|16.678|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.678|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 380zpi}} | ||
{{Harmonics in cet|16.678|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.678|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 380zpi (continued)}} | ||
; [[WE|72et, 13-limit WE tuning]] | ; [[WE|72et, 13-limit WE tuning]] | ||
* Step size: 16.680{{c}}, octave size: 1200.96{{c}} | * Step size: 16.680{{c}}, octave size: 1200.96{{c}} | ||
Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. Its | Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | ||
{{Harmonics in cet|16.680|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.680|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 72et, 13-limit WE tuning}} | ||
{{Harmonics in cet|16.680|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.680|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 72et, 13-limit WE tuning (continued)}} | ||
; [[114edt]] | ; [[114edt]] / [[167ed5]] | ||
* Step size: NNN{{c}}, octave size: 1201.23{{c}} | * Step size: NNN{{c}}, octave size: 1201.23{{c}} | ||
Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. The tuning | Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 144edt does this. The tuning 167ed5 does this also, its octave differing from 114edt by only 0.05{{c}}. | ||
{{Harmonics in equal|114|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|114|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 114edt}} | ||
{{Harmonics in equal|114|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|114|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 114edt (continued)}} | ||