User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 9: | Line 9: | ||
What follows is a comparison of stretched- and compressed-octave 41edo tunings. | What follows is a comparison of stretched- and compressed-octave 41edo tunings. | ||
; [[184zpi]] / [[WE|41et, 11-limit WE tuning]] | ; [[zpi|184zpi]] / [[WE|41et, 11-limit WE tuning]] | ||
* Step size: 29.277{{c}}, octave size: NNN{{c}} | * Step size: 29.277{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. So does 184zpi, | Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. So does 184zpi, whose octave is identical to WE within 0.02{{c}}. | ||
{{Harmonics in cet|29.277|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning}} | {{Harmonics in cet|29.277|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning}} | ||
{{Harmonics in cet|29.277|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning (continued)}} | {{Harmonics in cet|29.277|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning (continued)}} | ||
Line 17: | Line 17: | ||
; 41edo | ; 41edo | ||
* Step size: 29.268{{c}}, octave size: 1200.0{{c}} | * Step size: 29.268{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves 41edo approximates all harmonics up to 16 within NNN{{c}}. | Pure-octaves 41edo approximates all harmonics up to 16 within NNN{{c}}. The octaves of its compressed tuning [[147ed12]] differ by only 0.1{{c}} from pure. The octaves of its 13-limit [[WE]] and [[TE]] tuning differ by less than 0.1{{c}} from pure. | ||
{{Harmonics in equal|41|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41edo}} | {{Harmonics in equal|41|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41edo}} | ||
{{Harmonics in equal|41|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41edo (continued)}} | {{Harmonics in equal|41|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41edo (continued)}} | ||
; [[ | ; [[147ed12]] / [[106ed6]] / [[65edt]] | ||
* | * 147ed12 — step size: 29.265{{c}}, octave size: 1199.87{{c}} | ||
* 106ed6 — step size: 29.264{{c}}, octave size: 1199.69{{c}} | |||
* 65edt — step size: 29.261{{c}}, octave size: 1199.81{{c}} | |||
Compressing the octave of 41edo by around 0.2{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tunings 147ed12, 106ed6 and 65edt do this. | |||
* | |||
* | |||
Compressing the octave of 41edo by around | |||
{{Harmonics in equal|106|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 106ed6}} | {{Harmonics in equal|106|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 106ed6}} | ||
{{Harmonics in equal|106|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 106ed6 (continued)}} | {{Harmonics in equal|106|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 106ed6 (continued)}} | ||