User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 22: | Line 22: | ||
; [[97ed12]] | ; [[97ed12]] | ||
* Step size: | * Step size: 44.350{{c}}, octave size: 1197.5{{c}} | ||
Compressing the octave of 27edo by around 2.5{{c}} has the same benefits and drawbacks as the 13-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6{{c}}. The tuning 97ed12 does this. | Compressing the octave of 27edo by around 2.5{{c}} has the same benefits and drawbacks as the 13-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6{{c}}. The tuning 97ed12 does this. | ||
{{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}} | {{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}} | ||
{{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}} | {{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}} | ||
; [[zpi|106zpi | ; [[zpi|106zpi]] / [[WE|27et, 7-limit WE tuning]] / [[70ed6]] | ||
* Step size: | * Step size (106zpi): 44.306{{c}} | ||
* Octave size (70ed6): 1196.5{{c}} | |||
* Octave size (7-lim WE): 1196.4{{c}} | |||
* Octave size (106zpi): 1196.2{{c}} | |||
Compressing the octave of 27edo by around 3.5{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6. | Compressing the octave of 27edo by around 3.5{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6. | ||
{{Harmonics in cet|44.306|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi}} | {{Harmonics in cet|44.306|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi}} | ||
Line 34: | Line 37: | ||
; [[90ed10]] | ; [[90ed10]] | ||
* Step size: | * Step size: 44.292{{c}}, octave size: 1195.9{{c}} | ||
Compressing the octave of 27edo by around | Compressing the octave of 27edo by around 4{{c}} results in improved primes 3, 5, 7 and 11, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4{{c}}. The tuning 90ed10 does this. | ||
{{Harmonics in equal|90|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10}} | {{Harmonics in equal|90|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10}} | ||
{{Harmonics in equal|90|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10 (continued)}} | {{Harmonics in equal|90|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10 (continued)}} | ||
; [[43edt]] | ; [[43edt]] | ||
* Step size: | * Step size: 44.232{{c}}, octave size: 1204.3{{c}} | ||
Compressing the octave of 27edo by around 5.5{{c}} results in the same benefits and drawbacks as 90ed10, but amplified. This approximates all harmonics up to 16 within 21.2{{c}}. The tuning 43edt does this. | Compressing the octave of 27edo by around 5.5{{c}} results in the same benefits and drawbacks as 90ed10, but amplified. This approximates all harmonics up to 16 within 21.2{{c}}. The tuning 43edt does this. | ||
{{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}} | {{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}} | ||
{{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}} | {{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}} |