User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 22: Line 22:


; [[97ed12]]  
; [[97ed12]]  
* Step size: NNN{{c}}, octave size: 1197.5{{c}}
* Step size: 44.350{{c}}, octave size: 1197.5{{c}}
Compressing the octave of 27edo by around 2.5{{c}} has the same benefits and drawbacks as the 13-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6{{c}}. The tuning 97ed12 does this.
Compressing the octave of 27edo by around 2.5{{c}} has the same benefits and drawbacks as the 13-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6{{c}}. The tuning 97ed12 does this.
{{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}}
{{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}}
{{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}}
{{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}}


; [[zpi|106zpi]] / [[70ed6]] / [[WE|27et, 7-limit WE tuning]]
; [[zpi|106zpi]] / [[WE|27et, 7-limit WE tuning]] / [[70ed6]]
* Step size: ~44.306{{c}}, octave size: ~1196.2{{c}}
* Step size (106zpi): 44.306{{c}}
* Octave size (70ed6): 1196.5{{c}}
* Octave size (7-lim WE): 1196.4{{c}}
* Octave size (106zpi): 1196.2{{c}}
Compressing the octave of 27edo by around 3.5{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6.
Compressing the octave of 27edo by around 3.5{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6.
{{Harmonics in cet|44.306|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi}}
{{Harmonics in cet|44.306|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi}}
Line 34: Line 37:


; [[90ed10]]  
; [[90ed10]]  
* Step size: NNN{{c}}, octave size: 1195.9{{c}}
* Step size: 44.292{{c}}, octave size: 1195.9{{c}}
Compressing the octave of 27edo by around 5.5{{c}} results in improved primes 3, 5, 7 and 11, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4{{c}}. The tuning 90ed10 does this.
Compressing the octave of 27edo by around 4{{c}} results in improved primes 3, 5, 7 and 11, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4{{c}}. The tuning 90ed10 does this.
{{Harmonics in equal|90|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10}}
{{Harmonics in equal|90|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10}}
{{Harmonics in equal|90|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10 (continued)}}
{{Harmonics in equal|90|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10 (continued)}}


; [[43edt]]  
; [[43edt]]  
* Step size: NNN{{c}}, octave size: 1204.3{{c}}
* Step size: 44.232{{c}}, octave size: 1204.3{{c}}
Compressing the octave of 27edo by around 5.5{{c}} results in the same benefits and drawbacks as 90ed10, but amplified. This approximates all harmonics up to 16 within 21.2{{c}}. The tuning 43edt does this.
Compressing the octave of 27edo by around 5.5{{c}} results in the same benefits and drawbacks as 90ed10, but amplified. This approximates all harmonics up to 16 within 21.2{{c}}. The tuning 43edt does this.
{{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}}
{{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}}
{{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}}
{{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}}