User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 9: Line 9:
What follows is a comparison of stretched-octave 31edo tunings.
What follows is a comparison of stretched-octave 31edo tunings.


; EDONAME
; 31edo
* Step size: 38.710{{c}}, octave size: 1200.0{{c}}  
* Step size: 38.710{{c}}, octave size: 1200.0{{c}}  
Pure-octaves 31edo approximates all harmonics up to 16 within NNN{{c}}.
Pure-octaves 31edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|31|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|31|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31edo}}
{{Harmonics in equal|31|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME (continued)}}
{{Harmonics in equal|31|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31edo (continued)}}


; [[WE|31et, 13-limit WE tuning]]  
; [[WE|31et, 13-limit WE tuning]]  
* Step size: 38.725{{c}}, octave size: NNN{{c}}
* Step size: 38.725{{c}}, octave size: 1200.5{{c}}
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
Stretching the octave of 31edo by around 0.5{{c}} results in slightly improved primes 3, 7 and 11, but slightly worse primes 2, 5 and 13. This approximates all harmonics up to 16 within 12.8{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|38.725|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, 13-limit WE tuning}}
{{Harmonics in cet|38.725|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, 13-limit WE tuning}}
{{Harmonics in cet|38.725|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, SUBGROUP WE tuning (continued)}}
{{Harmonics in cet|38.725|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, SUBGROUP WE tuning (continued)}}
Line 24: Line 24:
* Step size: 38.737{{c}}, octave size: NNN{{c}}
* Step size: 38.737{{c}}, octave size: NNN{{c}}
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 127zpi does this.
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 127zpi does this.
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi}}
{{Harmonics in cet|38.737|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi (continued)}}
{{Harmonics in cet|38.737|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi (continued)}}


; [[WE|31et, 11-limit WE tuning]]  
; [[WE|31et, 11-limit WE tuning]]