User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 8: Line 8:
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave 22edo tunings.
What follows is a comparison of stretched- and compressed-octave 22edo tunings.
; [[zpi|ZPINAME]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}}
; [[EDONOI]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}


; 22edo
; 22edo
Line 38: Line 26:
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}}
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}}
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}}
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}}
; [[35edt]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}


; [[13edf]]  
; [[13edf]]  
Line 50: Line 44:
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
13edf
35edt