User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 6: Line 6:


= Title2 =
= Title2 =
== Octave stretch or compression ==
== Octave compression ==
What follows is a comparison of stretched- and compressed-octave 17edo tunings.
What follows is a comparison of compressed-octave 17edo tunings.


; [[zpi|56zpi]]  
; 17edo
* Step size: 70.403{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 56zpi does this.
Pure-octaves 17edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in cet|70.403|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi}}
{{Harmonics in equal|17|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo}}
{{Harmonics in cet|70.403|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi (continued)}}
{{Harmonics in equal|17|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo (continued)}}
 
; [[44ed6]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 44ed6 does this.
{{Harmonics in equal|44|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6}}
{{Harmonics in equal|44|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6 (continued)}}


; [[27edt]]  
; [[27edt]]  
Line 21: Line 27:
{{Harmonics in equal|27|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edt (continued)}}
{{Harmonics in equal|27|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edt (continued)}}


; [[44ed6]]  
; [[zpi|56zpi]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 70.403{{c}}, octave size: NNN{{c}}
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 44ed6 does this.
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 56zpi does this.
{{Harmonics in equal|44|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6}}
{{Harmonics in cet|70.403|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi}}
{{Harmonics in equal|44|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6 (continued)}}
{{Harmonics in cet|70.403|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi (continued)}}
 
; [[WE|17et, 2.3.7.11.13 WE tuning]]
* Step size: 70.410{{c}}, octave size: NNN{{c}}
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.7.11.13 WE tuning and 2.3.7.11.13 [[TE]] tuning both do this.
{{Harmonics in cet|70.410|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11.13 WE tuning}}
{{Harmonics in cet|70.410|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11.13 WE tuning (continued)}}


; [[WE|17et, 2.3.7.11 WE tuning]]  
; [[WE|17et, 2.3.7.11 WE tuning]]  
Line 32: Line 44:
{{Harmonics in cet|70.392|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning}}
{{Harmonics in cet|70.392|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning}}
{{Harmonics in cet|70.392|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning (continued)}}
{{Harmonics in cet|70.392|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning (continued)}}
; [[WE|17et, 2.3.7.11.13 WE tuning]]
* Step size: 70.410{{c}}, octave size: NNN{{c}}
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.7.11.13 WE tuning and 2.3.7.11.13 [[TE]] tuning both do this.
{{Harmonics in cet|70.410|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|70.410|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}
; 17edo
* Step size: NNN{{c}}, octave size: NNN{{c}}
Pure-octaves 17edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|17|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo}}
{{Harmonics in equal|17|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo (continued)}