User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
Line 10: Line 10:


; [[40ed10]]  
; [[40ed10]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 99.658{{c}}, octave size: 1195.9{{c}}
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 40ed10 does this.
Compressing the octave of EDONAME by around 4{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 40ed10 does this.
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10}}
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10}}
{{Harmonics in equal|40|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10 (continued)}}
{{Harmonics in equal|40|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10 (continued)}}
Line 46: Line 46:


; [[31ed6]]  
; [[31ed6]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 100.063{{c}}, octave size: 1200.8{{c}}
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 31ed6 does this.
Stretching the octave of 12edo by a little less than 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 31ed6 does this.
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}}
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}}
{{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}}
{{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}}


; [[19edt]]  
; [[19edt]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 101.103{{c}}, octave size: 1201.2{{c}}
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 19edt does this.
Stretching the octave of 12edo by a little more than 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 19edt does this.
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}}
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}}
{{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}}
{{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}}


; [[7edf]]  
; [[7edf]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 100.3{{c}}, octave size: 1203.35{{c}}
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 7edf does this.
Stretching the octave of 12edo by around 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 7edf does this.
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}}
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}}
{{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}}
{{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}}