User:BudjarnLambeth/Sandbox2: Difference between revisions
mNo edit summary |
|||
Line 10: | Line 10: | ||
; [[40ed10]] | ; [[40ed10]] | ||
* Step size: | * Step size: 99.658{{c}}, octave size: 1195.9{{c}} | ||
Compressing the octave of EDONAME by around | Compressing the octave of EDONAME by around 4{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 40ed10 does this. | ||
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10}} | {{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10}} | ||
{{Harmonics in equal|40|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10 (continued)}} | {{Harmonics in equal|40|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10 (continued)}} | ||
Line 46: | Line 46: | ||
; [[31ed6]] | ; [[31ed6]] | ||
* Step size: | * Step size: 100.063{{c}}, octave size: 1200.8{{c}} | ||
Stretching the octave of 12edo by | Stretching the octave of 12edo by a little less than 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 31ed6 does this. | ||
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}} | {{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}} | ||
{{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}} | {{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}} | ||
; [[19edt]] | ; [[19edt]] | ||
* Step size: | * Step size: 101.103{{c}}, octave size: 1201.2{{c}} | ||
Stretching the octave of 12edo by | Stretching the octave of 12edo by a little more than 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 19edt does this. | ||
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}} | {{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}} | ||
{{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}} | {{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}} | ||
; [[7edf]] | ; [[7edf]] | ||
* Step size: | * Step size: 100.3{{c}}, octave size: 1203.35{{c}} | ||
Stretching the octave of 12edo by around | Stretching the octave of 12edo by around 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 7edf does this. | ||
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}} | {{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}} | ||
{{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}} | {{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}} |