User:BudjarnLambeth/Sandbox2: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
= Title1 = | |||
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | {{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | {{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | {{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | {{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | ||
= Title2 = | |||
== Octave stretch or compression == | |||
What follows is a comparison of stretched- and compressed-octave 12edo tunings. | |||
; [[40ed10]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 40ed10 does this. | |||
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10}} | |||
{{Harmonics in equal|40|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10 (continued)}} | |||
; [[WE|12et, 7-limit WE tuning]] | |||
* Step size: 99.664{{c}}, octave size: NNN{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|99.664|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning}} | |||
{{Harmonics in cet|99.664|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning (continued)}} | |||
; [[zpi|34zpi]] | |||
* Step size: 99.807{{c}}, octave size: NNN{{c}} | |||
Compressing the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 34zpi does this. | |||
{{Harmonics in cet|99.807|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi}} | |||
{{Harmonics in cet|99.807|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi (continued)}} | |||
; [[WE|12et, 5-limit WE tuning]] | |||
* Step size: 99.868{{c}}, octave size: NNN{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 5-limit WE tuning and 5-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|99.868|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning}} | |||
{{Harmonics in cet|99.868|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning (continued)}} | |||
; [[WE|12et, 2.3.5.17.19 WE tuning]] | |||
* Step size: 99.930{{c}}, octave size: NNN{{c}} | |||
Compressing the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The 2.3.5.17.19 WE tuning and 2.3.5.17.19 [[TE]] tuning both do this. | |||
{{Harmonics in cet|99.930|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 2.3.5.17.19 WE tuning}} | |||
{{Harmonics in cet|99.930|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 2.3.5.17.19 WE tuning (continued)}} | |||
; 12edo | |||
* Step size: 100.000{{c}}, octave size: 1200.0{{c}} | |||
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | |||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME}} | |||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME (continued)}} | |||
; [[31ed6]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 31ed6 does this. | |||
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}} | |||
{{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}} | |||
; [[19edt]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 19edt does this. | |||
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}} | |||
{{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}} | |||
; [[7edf]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 7edf does this. | |||
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}} | |||
{{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}} |