User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 3: | Line 3: | ||
What follows is a comparison of stretched- and compressed-octave 7edo tunings. | What follows is a comparison of stretched- and compressed-octave 7edo tunings. | ||
; | ; 7edo | ||
* Step size: | * Step size: 171.429{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves 7edo approximates all harmonics up to 16 within NNN{{c}}. | |||
{{Harmonics in equal|7|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edo}} | |||
{{Harmonics in equal|7|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edo (continued)}} | |||
{{Harmonics in equal| | |||
{{Harmonics in equal| | |||
; [[WE|7et, 2.3.11.13 WE]] | ; [[WE|7et, 2.3.11.13 WE]] | ||
* Step size: 171.993{{c}}, octave size: | * Step size: 171.993{{c}}, octave size: 1204.0{{c}} | ||
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The 2.3.11.13 WE tuning and 2.3.11.13 [[TE]] tuning both do this. | |||
{{Harmonics in cet|171.993|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE}} | {{Harmonics in cet|171.993|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE}} | ||
{{Harmonics in cet|171.993|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE (continued)}} | {{Harmonics in cet|171.993|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE (continued)}} | ||
; | ; [[18ed6]] | ||
* Step size: | * Step size: 172.331{{c}}, octave size: 1206.3{{c}} | ||
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 18ed6 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 18ed6}} | ||
{{Harmonics in equal| | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 18ed6 (continued)}} | ||
; [[WE|7et, 2.3.5.11.13 WE]] | ; [[WE|7et, 2.3.5.11.13 WE]] | ||
* Step size: | * Step size: 172.390{{c}}, octave size: 1206.7{{c}} | ||
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.5.11.13 WE tuning and 2.3.5.11.13 [[TE]] tuning both do this. | |||
{{Harmonics in cet|172.390|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in cet|172.390|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.5.11.13 WE}} | ||
{{Harmonics in cet|172.390|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in cet|172.390|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.5.11.13 WE (continued)}} | ||
; [[zpi|15zpi]] | |||
* Step size: 172.495{{c}}, octave size: 1207.5{{c}} | |||
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 15zpi does this. | |||
{{Harmonics in cet|172.495|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 15zpi}} | |||
{{Harmonics in cet|172.495|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 15zpi (continued)}} | |||
; [[ | ; [[11edt]] | ||
* Step size: | * Step size: 172.905{{c}}, octave size: 1210.3{{c}} | ||
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 11edt does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|11|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 11edt}} | ||
{{Harmonics in equal| | {{Harmonics in equal|11|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 11edt (continued)}} |