User:BudjarnLambeth/Draft related tunings section: Difference between revisions
Line 386: | Line 386: | ||
What follows is a comparison of stretched- and compressed-octave EDONAME tunings. | What follows is a comparison of stretched- and compressed-octave EDONAME tunings. | ||
; [[ | ; [[EDONOI]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning | _ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | ||
; [[TE|ETNAME, TETUNING]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this. | |||
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}} | |||
{{Harmonics in cet|100|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}} | |||
; EDONAME | ; EDONAME | ||
Line 398: | Line 404: | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME (continued)}} | ||
; [[ | ; [[TE|ETNAME, TETUNING]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this. | |||
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}} | |||
{{Harmonics in cet|100|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}} | |||
; [[EDONOI]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning | _ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} |