User:BudjarnLambeth/Draft related tunings section: Difference between revisions
Line 390: | Line 390: | ||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | _ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING}} | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer title=Approximation of harmonics in TUNING (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING (continued)}} | ||
; EDONAME | ; EDONAME | ||
Line 396: | Line 396: | ||
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME}} | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer title=Approximation of harmonics in EDONAME (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME (continued)}} | ||
; [[TUNING]] | ; [[TUNING]] | ||
Line 402: | Line 402: | ||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | _ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING}} | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer title=Approximation of harmonics in TUNING (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING (continued)}} |