User:BudjarnLambeth/Draft related tunings section: Difference between revisions
Add a blank version for ease of use |
|||
Line 389: | Line 389: | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | _ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true}} | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|title=Approximation of harmonics in TUNING (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer title=Approximation of harmonics in TUNING (continued)}} | ||
; EDONAME | ; EDONAME | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal|12|2|1 | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME}} | ||
{{Harmonics in equal|12|2|1 | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer title=Approximation of harmonics in EDONAME (continued)}} | ||
; [[TUNING]] | ; [[TUNING]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | _ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TUNING does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true}} | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TUNING}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|title=Approximation of harmonics in TUNING (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer title=Approximation of harmonics in TUNING (continued)}} |