36edo: Difference between revisions

m Odd harmonics: Add link to octave stretch or compression section
m Odd harmonics: Fix link so that it actually works
Line 13: Line 13:
36edo is also notable for being the smallest multiple of 12edo to be [[distinctly consistent]] in the [[7-odd-limit]] (that is, all 7-odd-limit just intervals are represented by different steps).
36edo is also notable for being the smallest multiple of 12edo to be [[distinctly consistent]] in the [[7-odd-limit]] (that is, all 7-odd-limit just intervals are represented by different steps).


36edo has almost 50% relative error on harmonics 5/1 and 11/1. This means that whether one [[octave stretch|stretches]] or [[octave shrinking|compresses]] the octave, either way it will improve 36edo's approximations of [[JI]], but in opposite directions, as long as it is done by the right amount, as discussed in more detail in [[36edo#octave stretch or compression|octave stretch or compression]].
36edo has almost 50% relative error on harmonics 5/1 and 11/1. This means that whether one [[octave stretch|stretches]] or [[octave shrinking|compresses]] the octave, either way it will improve 36edo's approximations of [[JI]], but in opposite directions, as long as it is done by the right amount, as discussed in more detail in [[36edo#Octave_stretch_or_compression|octave stretch or compression]].
{{Harmonics in equal|36|intervals=odd|prec=2|columns=14}}
{{Harmonics in equal|36|intervals=odd|prec=2|columns=14}}
{{Harmonics in equal|36|intervals=odd|columns=14|prec=2|start=15|collapsed=true|title=Approximation of odd harmonics in 36edo (continued)}}
{{Harmonics in equal|36|intervals=odd|columns=14|prec=2|start=15|collapsed=true|title=Approximation of odd harmonics in 36edo (continued)}}