Fokker block: Difference between revisions
clarify what properties hold for strong vs. non-strong fokker blocks |
framed definition in terms of epimorphicity, not constant structure |
||
Line 3: | Line 3: | ||
A '''Fokker block''' (or periodicity block) is a [[periodic scale|periodic]] [[scale]] that can be thought of as a tile on a lattice of [[pitch class]]es (of a [[JI subgroup]] or a [[regular temperament]]) shaped as a parallelogram, parallelepiped or higher-dimensional analog. It comprises those intervals in the lattice which fall inside the tile after moving the tile on the lattice to a place where no lattice point is on its boundary. (Different positions of the tile can create scales which are not rotations of each other.) The scale repeats at the [[interval of equivalence]], which lies on the [[1/1|unison]] in the lattice of pitch classes. | A '''Fokker block''' (or periodicity block) is a [[periodic scale|periodic]] [[scale]] that can be thought of as a tile on a lattice of [[pitch class]]es (of a [[JI subgroup]] or a [[regular temperament]]) shaped as a parallelogram, parallelepiped or higher-dimensional analog. It comprises those intervals in the lattice which fall inside the tile after moving the tile on the lattice to a place where no lattice point is on its boundary. (Different positions of the tile can create scales which are not rotations of each other.) The scale repeats at the [[interval of equivalence]], which lies on the [[1/1|unison]] in the lattice of pitch classes. | ||
All Fokker blocks are [[Periodic scale#Epimorphism|weakly epimorphic]]; if a Fokker block is (strongly) epimorphic, it is called '''strong'''. | |||
The concept of the Fokker block was developed by the physicist and music theorist [[Adriaan Fokker]]. | The concept of the Fokker block was developed by the physicist and music theorist [[Adriaan Fokker]]. |