User:Hkm/Sandbox: Difference between revisions

Hkm (talk | contribs)
No edit summary
Hkm (talk | contribs)
mNo edit summary
Line 47: Line 47:


== Badness ==
== Badness ==
We take all of the fractions greater than 1 within the temperament subgroup and map them to orthogonal Kronecker vectors in an infinite-dimensional vector space (because there are infinitely many fractions within the temperament subgroup). We plot all of our infinitely many commas on this vector space (for example, if our comma basis contains elements that generate 80/81, the vector [-4 1] in the subgroup with first coordinate corresponding to 3/2 and second coordinate 5/1 is plotted here because (3/2)^-4 * 5/1 = 80/81). We then stretch each axis (which is a linear transformation where the eigenvectors are the kronecker vectors) to have length equal to (min_axis_length + the square root of the cent error) * the sum of the numerator and denominator of the basis element, where min_axis_length is a constant and the cent error is the difference between the tempered cent value (using the tempered generators) and the real cent value. Then the score of a comma is score_persistence to the power of its 1-norm (taxicab norm), where score_persistence < 1. Yes, this is summing over infinitely many things, so instead sum over a large finite number because the series converges.
We take all of the fractions greater than 1 within the temperament subgroup and map them to orthogonal Kronecker vectors in an infinite-dimensional vector space (because there are infinitely many fractions within the temperament subgroup). We plot all of our infinitely many commas on this vector space (for example, if our comma basis contains elements that generate 80/81, the vector [-4 1] in the subgroup with first coordinate corresponding to 3/2 and second coordinate 5/1 is plotted here because (3/2)^-4 * 5/1 = 80/81). We then stretch each axis (which is a linear transformation where the eigenvectors are the kronecker vectors) to have length equal to (min_axis_length + the square root of the cent error) * the sum of the numerator and denominator of the basis element, where min_axis_length is a constant and the cent error is the difference between the tempered cent value (using the tempered generators) and the real cent value. Then the score of a comma is score_persistence to the power of its 1-norm (taxicab norm), where score_persistence < 1.


The score for a temperament is the sum of the scores of all the commas.
The score for a temperament is the sum of the scores of all the commas.