Maximal evenness: Difference between revisions

Wikispaces>xenwolf
**Imported revision 481797458 - Original comment: included another popular example**
Wikispaces>xenwolf
**Imported revision 483190602 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2014-01-10 03:53:50 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2014-01-16 03:20:06 UTC</tt>.<br>
: The original revision id was <tt>481797458</tt>.<br>
: The original revision id was <tt>483190602</tt>.<br>
: The revision comment was: <tt>included another popular example</tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Within every [[edo]] one can specify a "maximally even" (ME) scale for every smaller edo. The maximally even scale is the closest the parent edo can get to representing the smaller edo. Mathematically, ME scales of n notes in m edo are any mode of the sequence ME(n, m) = [floor(i*m/n) | i=1..n], where the [[https://en.wikipedia.org/wiki/Floor_and_ceiling_functions|"floor"]] function rounds down to the nearest integer.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Within every [[edo]] one can specify a "maximally even" (ME) scale for every smaller edo. The maximally even scale is the closest the parent edo can get to representing the smaller edo. Mathematically, ME scales of n notes in m edo are any [[mode]] of the sequence ME(n, m) = [floor(i*m/n) | i=1..n], where the [[https://en.wikipedia.org/wiki/Floor_and_ceiling_functions|"floor"]] function rounds down to the nearest integer.


The maximally even scale will be one:
The maximally even scale will be one:
Line 69: Line 69:
Note that "maximally even" is equivalent to "quasi-equal-interval-symmetrical" in [[Joel Mandelbaum]]'s 1961 thesis [[http://www.anaphoria.com/mandelbaum.html|Multiple Divisions of the Octave and the Tonal Resources of 19-Tone Temperament]]. Previous versions of this article have conflated "quasi-equal" with "quasi-equal-interval symmetrical". In fact, "quasi-equal" scales, according to Mandelbaum, meet the first criterion listed above, but not necessarily the second.</pre></div>
Note that "maximally even" is equivalent to "quasi-equal-interval-symmetrical" in [[Joel Mandelbaum]]'s 1961 thesis [[http://www.anaphoria.com/mandelbaum.html|Multiple Divisions of the Octave and the Tonal Resources of 19-Tone Temperament]]. Previous versions of this article have conflated "quasi-equal" with "quasi-equal-interval symmetrical". In fact, "quasi-equal" scales, according to Mandelbaum, meet the first criterion listed above, but not necessarily the second.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Maximal evenness&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Within every &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt; one can specify a &amp;quot;maximally even&amp;quot; (ME) scale for every smaller edo. The maximally even scale is the closest the parent edo can get to representing the smaller edo. Mathematically, ME scales of n notes in m edo are any mode of the sequence ME(n, m) = [floor(i*m/n) | i=1..n], where the &lt;a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Floor_and_ceiling_functions" rel="nofollow"&gt;&amp;quot;floor&amp;quot;&lt;/a&gt; function rounds down to the nearest integer.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Maximal evenness&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Within every &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt; one can specify a &amp;quot;maximally even&amp;quot; (ME) scale for every smaller edo. The maximally even scale is the closest the parent edo can get to representing the smaller edo. Mathematically, ME scales of n notes in m edo are any &lt;a class="wiki_link" href="/mode"&gt;mode&lt;/a&gt; of the sequence ME(n, m) = [floor(i*m/n) | i=1..n], where the &lt;a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Floor_and_ceiling_functions" rel="nofollow"&gt;&amp;quot;floor&amp;quot;&lt;/a&gt; function rounds down to the nearest integer.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The maximally even scale will be one:&lt;br /&gt;
The maximally even scale will be one:&lt;br /&gt;