Map of rank-2 temperaments: Difference between revisions
Wikispaces>keenanpepper **Imported revision 270810942 - Original comment: ** |
Wikispaces>keenanpepper **Imported revision 279961630 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-11- | : This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-11-28 22:11:53 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>279961630</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 120: | Line 120: | ||
==Seven periods per octave== | ==Seven periods per octave== | ||
* [[Whitewood]] - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5. | * [[Whitewood]] - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5. | ||
* [[Jamesbond]] - The 5-limit is represented using [[7edo]], and the generator is only used for intervals of 7. | * [[Jamesbond]]/[[septimal]] - The 5-limit (and in septimal the prime 11) is represented using [[7edo]], and the generator is only used for intervals of 7. | ||
* [[Sevond]] - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp. | * [[Sevond]] - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp. | ||
* [[Absurdity]] - A complex temperament (perhaps "absurdly" so). | * [[Absurdity]] - A complex temperament (perhaps "absurdly" so). | ||
Line 3,239: | Line 3,239: | ||
<ul><li><a class="wiki_link" href="/Blackwood">Blackwood</a>/<a class="wiki_link" href="/blacksmith">blacksmith</a> - The prime 3, and in blacksmith also 7, is represented using <a class="wiki_link" href="/5edo">5edo</a>. The generator gets you to all intervals of 5.</li></ul><!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x-Six periods per octave"></a><!-- ws:end:WikiTextHeadingRule:10 -->Six periods per octave</h2> | <ul><li><a class="wiki_link" href="/Blackwood">Blackwood</a>/<a class="wiki_link" href="/blacksmith">blacksmith</a> - The prime 3, and in blacksmith also 7, is represented using <a class="wiki_link" href="/5edo">5edo</a>. The generator gets you to all intervals of 5.</li></ul><!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x-Six periods per octave"></a><!-- ws:end:WikiTextHeadingRule:10 -->Six periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Hexe">Hexe</a> - The 2.5.7 subgroup is represented using <a class="wiki_link" href="/6edo">6edo</a>, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to <a class="wiki_link" href="/12edo">12edo</a>.</li></ul><!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="x-Seven periods per octave"></a><!-- ws:end:WikiTextHeadingRule:12 -->Seven periods per octave</h2> | <ul><li><a class="wiki_link" href="/Hexe">Hexe</a> - The 2.5.7 subgroup is represented using <a class="wiki_link" href="/6edo">6edo</a>, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to <a class="wiki_link" href="/12edo">12edo</a>.</li></ul><!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="x-Seven periods per octave"></a><!-- ws:end:WikiTextHeadingRule:12 -->Seven periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Whitewood">Whitewood</a> - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.</li><li><a class="wiki_link" href="/Jamesbond">Jamesbond</a> - The 5-limit is represented using <a class="wiki_link" href="/7edo">7edo</a>, and the generator is only used for intervals of 7.</li><li><a class="wiki_link" href="/Sevond">Sevond</a> - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.</li><li><a class="wiki_link" href="/Absurdity">Absurdity</a> - A complex temperament (perhaps &quot;absurdly&quot; so).</li></ul><!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x-Eight periods per octave"></a><!-- ws:end:WikiTextHeadingRule:14 -->Eight periods per octave</h2> | <ul><li><a class="wiki_link" href="/Whitewood">Whitewood</a> - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.</li><li><a class="wiki_link" href="/Jamesbond">Jamesbond</a>/<a class="wiki_link" href="/septimal">septimal</a> - The 5-limit (and in septimal the prime 11) is represented using <a class="wiki_link" href="/7edo">7edo</a>, and the generator is only used for intervals of 7.</li><li><a class="wiki_link" href="/Sevond">Sevond</a> - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.</li><li><a class="wiki_link" href="/Absurdity">Absurdity</a> - A complex temperament (perhaps &quot;absurdly&quot; so).</li></ul><!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x-Eight periods per octave"></a><!-- ws:end:WikiTextHeadingRule:14 -->Eight periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Octoid">Octoid</a> - 16-cent generator, sub-cent accuracy.</li></ul><!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="x-Nine periods per octave"></a><!-- ws:end:WikiTextHeadingRule:16 -->Nine periods per octave</h2> | <ul><li><a class="wiki_link" href="/Octoid">Octoid</a> - 16-cent generator, sub-cent accuracy.</li></ul><!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="x-Nine periods per octave"></a><!-- ws:end:WikiTextHeadingRule:16 -->Nine periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Ennealimmal">Ennealimmal</a> - The generator is 49.02 cents, and don't forget the &quot;.02&quot; because it really is that accurate.</li></ul><!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="x-Twelve periods per octave"></a><!-- ws:end:WikiTextHeadingRule:18 -->Twelve periods per octave</h2> | <ul><li><a class="wiki_link" href="/Ennealimmal">Ennealimmal</a> - The generator is 49.02 cents, and don't forget the &quot;.02&quot; because it really is that accurate.</li></ul><!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="x-Twelve periods per octave"></a><!-- ws:end:WikiTextHeadingRule:18 -->Twelve periods per octave</h2> |