User:Lucius Chiaraviglio/Musical Mad Science: Difference between revisions

Musical Mad Science Musings on Diatonicized Sixth-Tone Sub-Chromaticism(?): Complete the entries just added for right-most column of the 17L 2s tuning table
Make table labels consistent; add some links; fix a couple of editing errors
Line 19: Line 19:
==== My YouTube comments start here ====
==== My YouTube comments start here ====


I just had a crazy idea for your next musical mad science experiment (and it potentially includes 50edo):  See if it is possible to retune some of the quarter-tone ([[24edo]], "diatonicized chromatic")11L 2s (L/s = 2) scale works of Ivan Wyschnegradsky into other tuning systems that support 11L 2s and have a good approximation and single circle of 11/8 (or 16/11).  Plausible candidate tuning systems on the soft side are [[37edo]] (L/s = 3/2, and has a super-good 11/8), [[61edo]] (L/s = 5/3, but 61edo is big enough to be pushing the limits of plausibility), and [[50edo]] (L/s = 4/3 -- might be too soft).  Plausible candidate tuning systems on the hard side are [[35edo]] (L/s = 3), [[59edo]] (L/s = 7/3, but 59edo is big enough to be pushing the limits of plausibility), and [[46edo]] (L/s = 4/1 -- might be too hard).
I just had a crazy idea for your next musical mad science experiment (and it potentially includes 50edo):  See if it is possible to retune some of the quarter-tone ([[24edo]], "diatonicized chromatic")11L 2s (L/s = 2) scale works of Ivan Wyschnegradsky into other tuning systems that support 11L 2s and have a good approximation and single circle of [[11/8]] (or [[16/11]]).  Plausible candidate tuning systems on the soft side are [[37edo]] (L/s = 3/2, and has a super-good 11/8), [[61edo]] (L/s = 5/3, but 61edo is big enough to be pushing the limits of plausibility), and [[50edo]] (L/s = 4/3 -- might be too soft).  Plausible candidate tuning systems on the hard side are [[35edo]] (L/s = 3), [[59edo]] (L/s = 7/3, but 59edo is big enough to be pushing the limits of plausibility), and [[46edo]] (L/s = 4/1 -- might be too hard).


Most of Ivan Wyschnegradsky's quarter-tone pieces are for 2 pianos tuned a quarter tone apart (in a few cases with other instruments); he did have a couple of quarter-tone pianos and even a quarter-tone harmonium built, but was not very satisfied with them (based on quarter-tone piano photos and video footage, I am going to hazard a guess that this was for ergonomic reasons); I think that with the way he wrote this music, it really does need the resonance and timbre of pianos.
Most of Ivan Wyschnegradsky's quarter-tone pieces are for 2 pianos tuned a quarter tone apart (in a few cases with other instruments); he did have a couple of quarter-tone pianos and even a quarter-tone harmonium built, but was not very satisfied with them (based on quarter-tone piano photos and video footage, I am going to hazard a guess that this was for ergonomic reasons); I think that with the way he wrote this music, it really does need the resonance and timbre of pianos.
Line 48: Line 48:


Added: [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 10:18, 25 January 2025 (UTC)<br>
Added: [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 10:18, 25 January 2025 (UTC)<br>
Last modified: [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 07:00, 9 April 2025 (UTC)
Last modified: [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:25, 26 April 2025 (UTC)


=== Comma for getting the fifth on the circle of 11/8 or 16/11 in the middle of the 11L 2s tuning spectrum ===
=== Comma for getting the fifth on the circle of 11/8 or 16/11 in the middle of the 11L 2s tuning spectrum ===
Line 68: Line 68:


This table (actually a collection of tables for now) is for tracking trends in odd harmonics along the tuning spectrum of [[11L&nbsp;2s]]; it is intended to match the organization of [[11L_2s#Scale_tree|the corresponding scale tree]]:
This table (actually a collection of tables for now) is for tracking trends in odd harmonics along the tuning spectrum of [[11L&nbsp;2s]]; it is intended to match the organization of [[11L_2s#Scale_tree|the corresponding scale tree]]:
{{Harmonics in equal|13|intervals=odd|prec=2|columns=28|title=[[13edo]] (L=1, s=1, [[16/11]] is 7) &mdash; Equalized 11L&nbsp;2s}}
{{Harmonics in equal|13|intervals=odd|prec=2|columns=28|title=[[13edo]] (L=1, s=1, ~[[16/11]] = 7) &mdash; Equalized 11L&nbsp;2s}}
{{Harmonics in equal|76|intervals=odd|prec=2|columns=28|title=[[76edo]] (L=6, s=5, 16/11 is 41)}}
{{Harmonics in equal|76|intervals=odd|prec=2|columns=28|title=[[76edo]] (L=6, s=5, ~16/11 = 41)}}
{{Harmonics in equal|63|intervals=odd|prec=2|columns=28|title=[[63edo]] (L=5, s=4, 16/11 is 34)}}
{{Harmonics in equal|63|intervals=odd|prec=2|columns=28|title=[[63edo]] (L=5, s=4, ~16/11 = 34)}}
{{Harmonics in equal|113|intervals=odd|prec=2|columns=28|title=[[113edo]] (L=9, s=7, 16/11 is 61)}}
{{Harmonics in equal|113|intervals=odd|prec=2|columns=28|title=[[113edo]] (L=9, s=7, ~16/11 = 61)}}
{{Harmonics in equal|50|intervals=odd|prec=2|columns=28|title=[[50edo]] (L=4, s=3, 16/11 is 27) &mdash; Supersoft 11L&nbsp;2s}}
{{Harmonics in equal|50|intervals=odd|prec=2|columns=28|title=[[50edo]] (L=4, s=3, ~16/11 = 27) &mdash; Supersoft 11L&nbsp;2s}}
{{Harmonics in equal|137|intervals=odd|prec=2|columns=28|title=[[137edo]] (L=11, s=8, 16/11 is 74)}}
{{Harmonics in equal|137|intervals=odd|prec=2|columns=28|title=[[137edo]] (L=11, s=8, ~16/11 = 74)}}
{{Harmonics in equal|87|intervals=odd|prec=2|columns=28|title=[[87edo]] (L=7, s=5, 16/11 is 47)}}
{{Harmonics in equal|87|intervals=odd|prec=2|columns=28|title=[[87edo]] (L=7, s=5, ~16/11 = 47)}}
{{Harmonics in equal|124|intervals=odd|prec=2|columns=28|title=[[124edo]] (L=10, s=7, 16/11 is 67)}}
{{Harmonics in equal|124|intervals=odd|prec=2|columns=28|title=[[124edo]] (L=10, s=7, ~16/11 = 67)}}
{{Harmonics in equal|37|intervals=odd|prec=2|columns=28|title=[[37edo]] (L=3, s=2, 16/11 is 20) &mdash; Soft 11L&nbsp;2s}}
{{Harmonics in equal|37|intervals=odd|prec=2|columns=28|title=[[37edo]] (L=3, s=2, ~16/11 is 20) &mdash; Soft 11L&nbsp;2s}}
{{Harmonics in equal|135|intervals=odd|prec=2|columns=28|title=[[135edo]] (L=11, s=7, 16/11 is 73)}}
{{Harmonics in equal|135|intervals=odd|prec=2|columns=28|title=[[135edo]] (L=11, s=7, ~16/11 = 73)}}
{{Harmonics in equal|98|intervals=odd|prec=2|columns=28|title=[[98edo]] (L=8, s=5, 16/11 is 53)}}
{{Harmonics in equal|98|intervals=odd|prec=2|columns=28|title=[[98edo]] (L=8, s=5, ~16/11 = 53)}}
{{Harmonics in equal|159|intervals=odd|prec=2|columns=28|title=[[159edo]] (L=13, s=8, 16/11 is 86)}}
{{Harmonics in equal|159|intervals=odd|prec=2|columns=28|title=[[159edo]] (L=13, s=8, ~16/11 = 86)}}
{{Harmonics in equal|61|intervals=odd|prec=2|columns=28|title=[[61edo]] (L=5, s=3, 16/11 is 33) &mdash; Semisoft 11L&nbsp;2s}}
{{Harmonics in equal|61|intervals=odd|prec=2|columns=28|title=[[61edo]] (L=5, s=3, ~16/11 = 33) &mdash; Semisoft 11L&nbsp;2s}}
{{Harmonics in equal|146|intervals=odd|prec=2|columns=28|title=[[146edo]] (L=12, s=7, 16/11 is 79)}}
{{Harmonics in equal|146|intervals=odd|prec=2|columns=28|title=[[146edo]] (L=12, s=7, ~16/11 = 79)}}
{{Harmonics in equal|85|intervals=odd|prec=2|columns=28|title=[[85edo]] (L=7, s=4, 16/11 is 46)}}
{{Harmonics in equal|85|intervals=odd|prec=2|columns=28|title=[[85edo]] (L=7, s=4, ~16/11 = 46)}}
{{Harmonics in equal|109|intervals=odd|prec=2|columns=28|title=[[109edo]] (L=9, s=5, 16/11 is 59)}}
{{Harmonics in equal|109|intervals=odd|prec=2|columns=28|title=[[109edo]] (L=9, s=5, ~16/11 = 59)}}
{{Harmonics in equal|24|intervals=odd|prec=2|columns=28|title=[[24edo]] (L=2, s=1, 16/11 is 13) &mdash; Basic 11L&nbsp;2s}}
{{Harmonics in equal|24|intervals=odd|prec=2|columns=28|title=[[24edo]] (L=2, s=1, ~16/11 = 13) &mdash; Basic 11L&nbsp;2s}}
{{Harmonics in equal|107|intervals=odd|prec=2|columns=28|title=[[107edo]] (L=9, s=4, 16/11 is 58)}}
{{Harmonics in equal|107|intervals=odd|prec=2|columns=28|title=[[107edo]] (L=9, s=4, ~16/11 = 58)}}
{{Harmonics in equal|83|intervals=odd|prec=2|columns=28|title=[[83edo]] (L=7, s=3, 16/11 is 45)}}
{{Harmonics in equal|83|intervals=odd|prec=2|columns=28|title=[[83edo]] (L=7, s=3, ~16/11 = 45)}}
{{Harmonics in equal|142|intervals=odd|prec=2|columns=28|title=[[142edo]] (L=12, s=5, 16/11 is 77)}}
{{Harmonics in equal|142|intervals=odd|prec=2|columns=28|title=[[142edo]] (L=12, s=5, ~16/11 = 77)}}
{{Harmonics in equal|59|intervals=odd|prec=2|columns=28|title=[[59edo]] (L=5, s=2, 16/11 is 32) &mdash; Semihard 11L&nbsp;2s}}
{{Harmonics in equal|59|intervals=odd|prec=2|columns=28|title=[[59edo]] (L=5, s=2, ~16/11 = 32) &mdash; Semihard 11L&nbsp;2s}}
{{Harmonics in equal|153|intervals=odd|prec=2|columns=28|title=[[153edo]] (L=13, s=5, 16/11 is 83)}}
{{Harmonics in equal|153|intervals=odd|prec=2|columns=28|title=[[153edo]] (L=13, s=5, ~16/11 = 83)}}
{{Harmonics in equal|94|intervals=odd|prec=2|columns=28|title=[[94edo]] (L=8, s=3, 16/11 is 51)}}
{{Harmonics in equal|94|intervals=odd|prec=2|columns=28|title=[[94edo]] (L=8, s=3, ~16/11 = 51)}}
{{Harmonics in equal|129|intervals=odd|prec=2|columns=28|title=[[129edo]] (L=11, s=4, 16/11 is 70)}}
{{Harmonics in equal|129|intervals=odd|prec=2|columns=28|title=[[129edo]] (L=11, s=4, ~16/11 = 70)}}
{{Harmonics in equal|35|intervals=odd|prec=2|columns=28|title=[[35edo]] (L=3, s=1, 16/11 is 19) &mdash; Hard 11L&nbsp;2s}}
{{Harmonics in equal|35|intervals=odd|prec=2|columns=28|title=[[35edo]] (L=3, s=1, ~16/11 = 19) &mdash; Hard 11L&nbsp;2s}}
{{Harmonics in equal|116|intervals=odd|prec=2|columns=28|title=[[116edo]] (L=10, s=3, 16/11 is 63)}}
{{Harmonics in equal|116|intervals=odd|prec=2|columns=28|title=[[116edo]] (L=10, s=3, ~16/11 = 63)}}
{{Harmonics in equal|81|intervals=odd|prec=2|columns=28|title=[[81edo]] (L=7, s=2, 16/11 is 44)}}
{{Harmonics in equal|81|intervals=odd|prec=2|columns=28|title=[[81edo]] (L=7, s=2, ~16/11 = 44)}}
{{Harmonics in equal|127|intervals=odd|prec=2|columns=28|title=[[127edo]] (L=11, s=3, 16/11 is 69)}}
{{Harmonics in equal|127|intervals=odd|prec=2|columns=28|title=[[127edo]] (L=11, s=3, ~16/11 = 69)}}
{{Harmonics in equal|46|intervals=odd|prec=2|columns=28|title=[[46edo]] (L=4, s=1, 16/11 is 25) &mdash; Superhard 11L&nbsp;2s}}
{{Harmonics in equal|46|intervals=odd|prec=2|columns=28|title=[[46edo]] (L=4, s=1, ~16/11 = 25) &mdash; Superhard 11L&nbsp;2s}}
{{Harmonics in equal|103|intervals=odd|prec=2|columns=28|title=[[103edo]] (L=9, s=2, 16/11 is 56)}}
{{Harmonics in equal|103|intervals=odd|prec=2|columns=28|title=[[103edo]] (L=9, s=2, ~16/11 = 56)}}
{{Harmonics in equal|57|intervals=odd|prec=2|columns=28|title=[[57edo]] (L=5, s=1, 16/11 is 31)}}
{{Harmonics in equal|57|intervals=odd|prec=2|columns=28|title=[[57edo]] (L=5, s=1, ~16/11 = 31)}}
{{Harmonics in equal|68|intervals=odd|prec=2|columns=28|title=[[68edo]] (L=6, s=1, 16/11 is 37)}}
{{Harmonics in equal|68|intervals=odd|prec=2|columns=28|title=[[68edo]] (L=6, s=1, ~16/11 = 37)}}
{{Harmonics in equal|11|intervals=odd|prec=2|columns=28|title=[[11edo]] (L=1, s=0, 16/11 is 6) &mdash; Collapsed 11L&nbsp;2s}}
{{Harmonics in equal|11|intervals=odd|prec=2|columns=28|title=[[11edo]] (L=1, s=0, ~16/11 = 6) &mdash; Collapsed 11L&nbsp;2s}}


Note that 11/8 (the dark generator, and thereby the bright generator 16/11) remains stable throughout the entire currently posted 11L&nbsp;2s table &emdash; the worst relative error is -34.8%, at 127edo.
Note that 11/8 (the dark generator, and thereby the bright generator 16/11) remains stable throughout the entire currently posted 11L&nbsp;2s table &emdash; the worst relative error is -34.8%, at 127edo.
Line 109: Line 109:


Added:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 07:00, 9 April 2025 (UTC)<br>
Added:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 07:00, 9 April 2025 (UTC)<br>
Last modified:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 07:31, 10 April 2025 (UTC)
Last modified:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:25, 26 April 2025 (UTC)


== Musical Mad Science Musings on Diatonicized Sixth-Tone Sub-Chromaticism(?) ==
== Musical Mad Science Musings on Diatonicized Sixth-Tone Sub-Chromaticism(?) ==
Line 128: Line 128:


Added:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:20, 4 April 2025 (UTC)<br>
Added:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:20, 4 April 2025 (UTC)<br>
Last modified:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:13, 26 April 2025 (UTC)
Last modified:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:25, 26 April 2025 (UTC)


=== Table of odd harmonics for various EDO values supporting 17L&nbsp;2s ===
=== Table of odd harmonics for various EDO values supporting 17L&nbsp;2s ===


This table (actually a collection of tables for now) is for tracking trends in odd harmonics along the tuning spectrum of [[17L&nbsp;2s]]; it is intended to match the organization of [[17L_2s#Scale_tree|the corresponding scale tree]]:
This table (actually a collection of tables for now) is for tracking trends in odd harmonics along the tuning spectrum of [[17L&nbsp;2s]]; it is intended to match the organization of [[17L_2s#Scale_tree|the corresponding scale tree]]:
{{Harmonics in equal|19|intervals=odd|prec=2|columns=28|title=[[19edo]] (L=1, s=1, BrightGen is 10; patent ~13/9 = 10; patent ~62/43 = 10) &mdash; Equalized 17L&nbsp;2s}}
{{Harmonics in equal|19|intervals=odd|prec=2|columns=28|title=[[19edo]] (L=1, s=1, BrightGen is 10; patent ~[[13/9]] = 10; patent ~[[62/43]] = 10) &mdash; Equalized 17L&nbsp;2s}}
{{Harmonics in equal|112|intervals=odd|prec=2|columns=28|title=[[112edo]] (L=6, s=5, BrightGen is 59; ''patent ~13/9 = 58; b val ~13/9 = 60''; patent ~62/43 = 59)}}
{{Harmonics in equal|112|intervals=odd|prec=2|columns=28|title=[[112edo]] (L=6, s=5, BrightGen is 59; ''patent ~13/9 = 58; b val ~13/9 = 60''; patent ~62/43 = 59)}}
{{Harmonics in equal|93|intervals=odd|prec=2|columns=28|title=[[93edo]] (L=5, s=4, BrightGen is 49; ''patent ~13/9 = 50''; patent ~62/43 = 49)}}
{{Harmonics in equal|93|intervals=odd|prec=2|columns=28|title=[[93edo]] (L=5, s=4, BrightGen is 49; ''patent ~13/9 = 50''; patent ~62/43 = 49)}}
{{Harmonics in equal|167|intervals=odd|prec=2|columns=28|title=[[167edo]] (L=9, s=7, BrightGen is 88; patent ~13/9 = 88; patent ~62/43 = 88)}}
{{Harmonics in equal|167|intervals=odd|prec=2|columns=28|title=[[167edo]] (L=9, s=7, BrightGen is 88; patent ~13/9 = 88; patent ~62/43 = 88)}}
{{Harmonics in equal|74|intervals=odd|prec=2|columns=28|title=[[74edo]] (L=4, s=3, BrightGen is 39; ''patent ~13/9 = 40''; patent ~13/9 = ; patent ~62/43 = 39) &mdash; Supersoft 17L&nbsp;2s}}
{{Harmonics in equal|74|intervals=odd|prec=2|columns=28|title=[[74edo]] (L=4, s=3, BrightGen is 39; ''patent ~13/9 = 40''; patent ~62/43 = 39) &mdash; Supersoft 17L&nbsp;2s}}
{{Harmonics in equal|203|intervals=odd|prec=2|columns=28|title=[[203edo]] (L=11, s=8, BrightGen is 107; patent ~13/9 = 107; patent ~62/43 = 107)}}
{{Harmonics in equal|203|intervals=odd|prec=2|columns=28|title=[[203edo]] (L=11, s=8, BrightGen is 107; patent ~13/9 = 107; patent ~62/43 = 107)}}
{{Harmonics in equal|129|intervals=odd|prec=2|columns=28|title=[[129edo]] (L=7, s=5, BrightGen is 68; ''patent ~13/9 = 69''; patent ~62/43 = 68)}}
{{Harmonics in equal|129|intervals=odd|prec=2|columns=28|title=[[129edo]] (L=7, s=5, BrightGen is 68; ''patent ~13/9 = 69''; patent ~62/43 = 68)}}
Line 172: Line 172:


Added:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 07:42, 8 April 2025 (UTC)<br>
Added:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 07:42, 8 April 2025 (UTC)<br>
Last modified:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:13, 26 April 2025 (UTC)
Last modified:  [[User:Lucius Chiaraviglio|Lucius Chiaraviglio]] ([[User talk:Lucius Chiaraviglio|talk]]) 08:25, 26 April 2025 (UTC)