Macrotonal edonois: Difference between revisions

Wikispaces>Andrew_Heathwaite
**Imported revision 111024307 - Original comment: **
Wikispaces>Andrew_Heathwaite
**Imported revision 111024331 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-12-24 18:04:43 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-12-24 18:05:24 UTC</tt>.<br>
: The original revision id was <tt>111024307</tt>.<br>
: The original revision id was <tt>111024331</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">EDONOI is short for "equal divisions of a non-octave interval".
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">EDONOI is short for "equal divisions of a non-octave interval".


Examples include the equal-tempered [[BP|Bohlen-Pierce scale]] (a.k.a. the 13th root of 3), [[Carlos Alpha]], [[Carlos Beta]], [[Carlos Gamma]], the [[19ED3|19th root of 3]], the [[6edf|6th root of 3:2]] , [[88cET]] and the [[square root of 13/10]].
Examples include the equal-tempered [[BP|Bohlen-Pierce scale]] (a.k.a. the 13th root of 3), [[Carlos Alpha]], [[Carlos Beta]], [[Carlos Gamma]], the [[19ED3|19th root of 3]], the [[6edf|6th root of 3:2]] , [[88cET]] and the [[square root of 13 over 10|square root of 13:10]] .


Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on [[edo]]s.
Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on [[edo]]s.
Line 16: Line 16:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;macrotonal edonois&lt;/title&gt;&lt;/head&gt;&lt;body&gt;EDONOI is short for &amp;quot;equal divisions of a non-octave interval&amp;quot;.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;macrotonal edonois&lt;/title&gt;&lt;/head&gt;&lt;body&gt;EDONOI is short for &amp;quot;equal divisions of a non-octave interval&amp;quot;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Examples include the equal-tempered &lt;a class="wiki_link" href="/BP"&gt;Bohlen-Pierce scale&lt;/a&gt; (a.k.a. the 13th root of 3), &lt;a class="wiki_link" href="/Carlos%20Alpha"&gt;Carlos Alpha&lt;/a&gt;, &lt;a class="wiki_link" href="/Carlos%20Beta"&gt;Carlos Beta&lt;/a&gt;, &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;, the &lt;a class="wiki_link" href="/19ED3"&gt;19th root of 3&lt;/a&gt;, the &lt;a class="wiki_link" href="/6edf"&gt;6th root of 3:2&lt;/a&gt; , &lt;a class="wiki_link" href="/88cET"&gt;88cET&lt;/a&gt; and the [[square root of 13/10]].&lt;br /&gt;
Examples include the equal-tempered &lt;a class="wiki_link" href="/BP"&gt;Bohlen-Pierce scale&lt;/a&gt; (a.k.a. the 13th root of 3), &lt;a class="wiki_link" href="/Carlos%20Alpha"&gt;Carlos Alpha&lt;/a&gt;, &lt;a class="wiki_link" href="/Carlos%20Beta"&gt;Carlos Beta&lt;/a&gt;, &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;, the &lt;a class="wiki_link" href="/19ED3"&gt;19th root of 3&lt;/a&gt;, the &lt;a class="wiki_link" href="/6edf"&gt;6th root of 3:2&lt;/a&gt; , &lt;a class="wiki_link" href="/88cET"&gt;88cET&lt;/a&gt; and the &lt;a class="wiki_link" href="/square%20root%20of%2013%20over%2010"&gt;square root of 13:10&lt;/a&gt; .&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt;s.&lt;br /&gt;
Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt;s.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional &lt;a class="wiki_link" href="/redundancy"&gt;redundancy&lt;/a&gt;, that of octave equivalence, and thus require special attention.&lt;/body&gt;&lt;/html&gt;</pre></div>
Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional &lt;a class="wiki_link" href="/redundancy"&gt;redundancy&lt;/a&gt;, that of octave equivalence, and thus require special attention.&lt;/body&gt;&lt;/html&gt;</pre></div>