Logarithmic approximants: Difference between revisions
Wikispaces>MartinGough **Imported revision 563735661 - Original comment: ** |
Wikispaces>MartinGough **Imported revision 564257477 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-10- | : This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-10-28 17:15:48 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>564257477</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 389: | Line 389: | ||
which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900). | which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900). | ||
As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to __21/20__ (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to __15/14__ (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to __50/49__ (34.976 cents). | As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to __21/20__ (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to __15/14__ (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to __50/49__ (34.976 cents). | ||
If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (__3120/3103__) is the bimodular comma formed from __10/7__ and __9/8__ | |||
By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">//r// = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2//a//+//b//</span>, where//<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>// and //<span style="font-family: Georgia,serif; font-size: 110%;">b</span>// are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">//a// = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;">__8/3__ = __2.6666...__</span>) is the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant|Gelfond-Schneider constant ]]or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>... | By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">//r// = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2//a//+//b//</span>, where//<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>// and //<span style="font-family: Georgia,serif; font-size: 110%;">b</span>// are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">//a// = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;">__8/3__ = __2.6666...__</span>) is the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant|Gelfond-Schneider constant ]]or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>... | ||
Line 489: | Line 490: | ||
=Sources and acknowledgements= | =Sources and acknowledgements= | ||
This article is based on original research by [[Martin Gough]]. See [[file:Bimod Approx 2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants. | This article is based on original research by [[Martin Gough]]. See [[file:Bimod Approx 2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants. | ||
The tuning referred to here as argent temperament was | The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it [[http://anaphoria.com/meruthree.pdf|2-zig/2-zag]]'. It was later rediscovered independently by [[graham breed|Graham Breed]] and Paul Hahn, who described it in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000. | ||
Thanks to [[Gene Ward Smith]] for the Gelfond-Schneider result.</pre></div> | Thanks to [[Gene Ward Smith]] for the Gelfond-Schneider result.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
Line 1,081: | Line 1,082: | ||
which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900).<br /> | which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900).<br /> | ||
As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to <u>21/20</u> (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to <u>15/14</u> (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to <u>50/49</u> (34.976 cents).<br /> | As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to <u>21/20</u> (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to <u>15/14</u> (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to <u>50/49</u> (34.976 cents).<br /> | ||
If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (<u>3120/3103</u>) is the bimodular comma formed from <u>10/7</u> and <u>9/8</u><br /> | |||
By the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow">Gelfond-Schneider theorem </a> the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2<em>a</em>+<em>b</em></span>, where<em><span style="font-family: Georgia,serif; font-size: 110%;"> a</span></em> and <em><span style="font-family: Georgia,serif; font-size: 110%;">b</span></em> are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;"><em>a</em> = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;"><u>8/3</u> = <u>2.6666...</u></span>) is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant" rel="nofollow">Gelfond-Schneider constant </a>or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>...<br /> | By the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow">Gelfond-Schneider theorem </a> the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2<em>a</em>+<em>b</em></span>, where<em><span style="font-family: Georgia,serif; font-size: 110%;"> a</span></em> and <em><span style="font-family: Georgia,serif; font-size: 110%;">b</span></em> are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;"><em>a</em> = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;"><u>8/3</u> = <u>2.6666...</u></span>) is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant" rel="nofollow">Gelfond-Schneider constant </a>or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>...<br /> | ||
<br /> | <br /> | ||
Line 1,372: | Line 1,374: | ||
<!-- ws:start:WikiTextHeadingRule:95:&lt;h1&gt; --><h1 id="toc22"><a name="Sources and acknowledgements"></a><!-- ws:end:WikiTextHeadingRule:95 -->Sources and acknowledgements</h1> | <!-- ws:start:WikiTextHeadingRule:95:&lt;h1&gt; --><h1 id="toc22"><a name="Sources and acknowledgements"></a><!-- ws:end:WikiTextHeadingRule:95 -->Sources and acknowledgements</h1> | ||
This article is based on original research by <a class="wiki_link" href="/Martin%20Gough">Martin Gough</a>. See <a href="/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf" onclick="ws.common.trackFileLink('/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf');">this paper</a> for a fuller account of bimodular approximants.<br /> | This article is based on original research by <a class="wiki_link" href="/Martin%20Gough">Martin Gough</a>. See <a href="/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf" onclick="ws.common.trackFileLink('/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf');">this paper</a> for a fuller account of bimodular approximants.<br /> | ||
The tuning referred to here as argent temperament was | The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it <a class="wiki_link_ext" href="http://anaphoria.com/meruthree.pdf" rel="nofollow">2-zig/2-zag</a>'. It was later rediscovered independently by <a class="wiki_link" href="/graham%20breed">Graham Breed</a> and Paul Hahn, who described it in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000.<br /> | ||
Thanks to <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a> for the Gelfond-Schneider result.</body></html></pre></div> | Thanks to <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a> for the Gelfond-Schneider result.</body></html></pre></div> |