Logarithmic approximants: Difference between revisions

Wikispaces>MartinGough
**Imported revision 563735661 - Original comment: **
Wikispaces>MartinGough
**Imported revision 564257477 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-10-24 12:53:21 UTC</tt>.<br>
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-10-28 17:15:48 UTC</tt>.<br>
: The original revision id was <tt>563735661</tt>.<br>
: The original revision id was <tt>564257477</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 389: Line 389:
which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900).
which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900).
As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to __21/20__ (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to __15/14__ (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to __50/49__ (34.976 cents).
As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to __21/20__ (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to __15/14__ (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to __50/49__ (34.976 cents).
If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (__3120/3103__) is the bimodular comma formed from __10/7__ and __9/8__
By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2//a//+//b//&lt;/span&gt;, where//&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;// and //&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;// are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//a// = 0&lt;/span&gt;). The frequency ratio of the tempered perfect eleventh (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;__8/3__ = __2.6666...__&lt;/span&gt;) is the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant|Gelfond-Schneider constant ]]or Hilbert number, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; = 2.665144&lt;/span&gt;...
By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2//a//+//b//&lt;/span&gt;, where//&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;// and //&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;// are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//a// = 0&lt;/span&gt;). The frequency ratio of the tempered perfect eleventh (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;__8/3__ = __2.6666...__&lt;/span&gt;) is the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant|Gelfond-Schneider constant ]]or Hilbert number, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; = 2.665144&lt;/span&gt;...


Line 489: Line 490:
=Sources and acknowledgements=  
=Sources and acknowledgements=  
This article is based on original research by [[Martin Gough]]. See [[file:Bimod Approx 2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants.
This article is based on original research by [[Martin Gough]]. See [[file:Bimod Approx 2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants.
The tuning referred to here as argent temperament was described by [[graham breed|Graham Breed]] and Paul Hahn in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000.
The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it [[http://anaphoria.com/meruthree.pdf|2-zig/2-zag]]'. It was later rediscovered independently by [[graham breed|Graham Breed]] and Paul Hahn, who described it in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000.
Thanks to [[Gene Ward Smith]] for the Gelfond-Schneider result.</pre></div>
Thanks to [[Gene Ward Smith]] for the Gelfond-Schneider result.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
Line 1,081: Line 1,082:
which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900).&lt;br /&gt;
which after squaring both sides leads to √2 ≈ 99/70, a well-known approximation which can be confirmed by noting that 99/70 = √(2 + 1/4900).&lt;br /&gt;
As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to &lt;u&gt;21/20&lt;/u&gt; (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to &lt;u&gt;15/14&lt;/u&gt; (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to &lt;u&gt;50/49&lt;/u&gt; (34.976 cents).&lt;br /&gt;
As a consequence of these relationships the tempered diatonic semitone (85.281 cents) is close to &lt;u&gt;21/20&lt;/u&gt; (84.467 cents), the tempered chromatic semitone (120.606 cents) is close to &lt;u&gt;15/14&lt;/u&gt; (119.443 cents), and the tempered Pythagorean comma (35.325 cents) is close to &lt;u&gt;50/49&lt;/u&gt; (34.976 cents).&lt;br /&gt;
If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (&lt;u&gt;3120/3103&lt;/u&gt;) is the bimodular comma formed from &lt;u&gt;10/7&lt;/u&gt; and &lt;u&gt;9/8&lt;/u&gt;&lt;br /&gt;
By the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow"&gt;Gelfond-Schneider theorem &lt;/a&gt; the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;em&gt;a&lt;/em&gt;+&lt;em&gt;b&lt;/em&gt;&lt;/span&gt;, where&lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;&lt;/em&gt; and &lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;&lt;/em&gt; are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;a&lt;/em&gt; = 0&lt;/span&gt;). The frequency ratio of the tempered perfect eleventh (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;u&gt;8/3&lt;/u&gt; = &lt;u&gt;2.6666...&lt;/u&gt;&lt;/span&gt;) is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant" rel="nofollow"&gt;Gelfond-Schneider constant &lt;/a&gt;or Hilbert number, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; = 2.665144&lt;/span&gt;...&lt;br /&gt;
By the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow"&gt;Gelfond-Schneider theorem &lt;/a&gt; the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;em&gt;a&lt;/em&gt;+&lt;em&gt;b&lt;/em&gt;&lt;/span&gt;, where&lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;&lt;/em&gt; and &lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;&lt;/em&gt; are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;a&lt;/em&gt; = 0&lt;/span&gt;). The frequency ratio of the tempered perfect eleventh (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;u&gt;8/3&lt;/u&gt; = &lt;u&gt;2.6666...&lt;/u&gt;&lt;/span&gt;) is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant" rel="nofollow"&gt;Gelfond-Schneider constant &lt;/a&gt;or Hilbert number, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; = 2.665144&lt;/span&gt;...&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 1,372: Line 1,374:
&lt;!-- ws:start:WikiTextHeadingRule:95:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc22"&gt;&lt;a name="Sources and acknowledgements"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:95 --&gt;Sources and acknowledgements&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:95:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc22"&gt;&lt;a name="Sources and acknowledgements"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:95 --&gt;Sources and acknowledgements&lt;/h1&gt;
  This article is based on original research by &lt;a class="wiki_link" href="/Martin%20Gough"&gt;Martin Gough&lt;/a&gt;. See &lt;a href="/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf" onclick="ws.common.trackFileLink('/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf');"&gt;this paper&lt;/a&gt; for a fuller account of bimodular approximants.&lt;br /&gt;
  This article is based on original research by &lt;a class="wiki_link" href="/Martin%20Gough"&gt;Martin Gough&lt;/a&gt;. See &lt;a href="/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf" onclick="ws.common.trackFileLink('/file/view/Bimod%20Approx%202014-6-8.pdf/541604262/Bimod%20Approx%202014-6-8.pdf');"&gt;this paper&lt;/a&gt; for a fuller account of bimodular approximants.&lt;br /&gt;
The tuning referred to here as argent temperament was described by &lt;a class="wiki_link" href="/graham%20breed"&gt;Graham Breed&lt;/a&gt; and Paul Hahn in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000.&lt;br /&gt;
The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it &lt;a class="wiki_link_ext" href="http://anaphoria.com/meruthree.pdf" rel="nofollow"&gt;2-zig/2-zag&lt;/a&gt;'. It was later rediscovered independently by &lt;a class="wiki_link" href="/graham%20breed"&gt;Graham Breed&lt;/a&gt; and Paul Hahn, who described it in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000.&lt;br /&gt;
Thanks to &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt; for the Gelfond-Schneider result.&lt;/body&gt;&lt;/html&gt;</pre></div>
Thanks to &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt; for the Gelfond-Schneider result.&lt;/body&gt;&lt;/html&gt;</pre></div>