List of superparticular intervals: Difference between revisions

Wikispaces>kai.lugheidh
**Imported revision 624587049 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
[[superparticular|Superparticular]] numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in [[Just_intonation|Just Intonation]] and [[OverToneSeries|Harmonic Series]] music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio [[21/20|21/20]]. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common [[Comma|comma]]s are superparticular ratios.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:kai.lugheidh|kai.lugheidh]] and made on <tt>2018-01-08 19:00:54 UTC</tt>.<br>
: The original revision id was <tt>624587049</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[Superparticular]] numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in [[Just Intonation]] and [[OverToneSeries|Harmonic Series]] music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio [[21_20|21/20]]. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common [[comma]]s are superparticular ratios.


The list below is ordered by [[harmonic limit]], or the largest prime involved in the prime factorization. [[36_35|36/35]], for instance, is an interval of the [[7-limit]], as it factors to (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;)/(5*7), while 37/36 would belong to the 37-limit.
The list below is ordered by [[Harmonic_Limit|harmonic limit]], or the largest prime involved in the prime factorization. [[36/35|36/35]], for instance, is an interval of the [[7-limit|7-limit]], as it factors to (2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>)/(5*7), while 37/36 would belong to the 37-limit.


[[http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem|Størmer's theorem]] guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. OEIS [[http://oeis.org/A145604|A145604]] gives the number of superparticular ratios in each prime limit, and [[http://oeis.org/A117581|A117581]] the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
[http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem Størmer's theorem] guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. OEIS [http://oeis.org/A145604 A145604] gives the number of superparticular ratios in each prime limit, and [http://oeis.org/A117581 A117581] the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).


See also: [[Gallery of Just Intervals]]. Many of the names below come from [[http://www.huygens-fokker.org/docs/intervals.html|here]].
See also: [[Gallery_of_Just_Intervals|Gallery of Just Intervals]]. Many of the names below come from [http://www.huygens-fokker.org/docs/intervals.html here].


||~ Ratio ||~ Cents ||~ Factorization ||~ [[Monzo]] ||~ Name(s) ||
{| class="wikitable"
||||||||||~ 2-limit (complete) ||
|-
|| [[2_1|2/1]] || 1200.000 || 2/1 || | 1 &gt; || (perfect) unison, unity, perfect prime, tonic, duple ||
! | Ratio
||||||||||~ 3-limit (complete) ||
! | Cents
|| [[3_2|3/2]] || 701.995 || 3/2 || | -1 1 &gt; || [[perfect fifth]], 3rd harmonic (octave reduced), diapente ||
! | Factorization
|| [[4_3|4/3]] || 498.045 || 2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/3 || | 2 -1 &gt; || perfect fourth, 3rd subharmonic (octave reduced), diatessaron ||
! | [[monzo|Monzo]]
|| [[9_8|9/8]] || 203.910 || 3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt; || | -3 2 &gt; || (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) ||
! | Name(s)
||||||||||~ 5-limit (complete) ||
|-
|| [[5_4|5/4]] || 386.314 || 5/2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt; || | -2 0 1 &gt; || (classic) (5-limit) major third, 5th harmonic (octave reduced) ||
! colspan="5" | 2-limit (complete)
|| [[6_5|6/5]] || 315.641 || (2*3)/5 || | 1 1 -1 &gt; || (classic) (5-limit) minor third ||
|-
|| [[10_9|10/9]] || 182.404 || (2*5)/3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt; || | 1 -2 1 &gt; || classic (whole) tone, classic major second, minor whole tone ||
| | [[2/1|2/1]]
|| [[16_15|16/15]] || 111.713 || 2&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/(3*5) || | 4 -1 -1 &gt; || minor diatonic semitone, 15th subharmonic ||
| | 1200.000
|| [[25_24|25/24]] || 70.672 || 5&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt;*3) || | -3 -1 2 &gt; || chroma, (classic) chromatic semitone, Zarlinian semitone ||
| | 2/1
|| [[81_80|81/80]] || 21.506 || (3/2)&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/5 || | -4 4 -1 &gt; || syntonic comma, Didymus comma ||
| | | 1 &gt;
||||||||||~ 7-limit (complete) ||
| | (perfect) unison, unity, perfect prime, tonic, duple
|| [[7_6|7/6]] || 266.871 || 7/(2*3) || | -1 -1 0 1 &gt; || (septimal) subminor third, septimal minor third, augmented second ||
|-
|| [[8_7|8/7]] || 231.174 || 2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt;/7 || | 3 0 0 -1 &gt; || (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic ||
! colspan="5" | 3-limit (complete)
|| [[15_14|15/14]] || 119.443 || (3*5)/(2*7) || | -1 1 1 -1 &gt; || septimal diatonic semitone ||
|-
|| [[21_20|21/20]] || 84.467 || (3*7)/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*5) || | -2 1 -1 1 &gt; || minor semitone, large septimal chromatic semitone ||
| | [[3/2|3/2]]
|| [[28_27|28/27]] || 62.961 || (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*7)/3&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt; || | 2 -3 0 1 &gt; || septimal chroma, small septimal chromatic semitone, Archytas' 1/3-tone ||
| | 701.995
|| [[36_35|36/35]] || 48.770 || (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt;)/(5*7) || | 2 2 -1 -1 &gt; || septimal quarter tone, septimal diesis ||
| | 3/2
|| [[49_48|49/48]] || 35.697 || 7&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;*3) || | -4 -1 0 2 &gt; || large septimal diesis, slendro diesis, septimal 1/6-tone ||
| | | -1 1 &gt;
|| [[50_49|50/49]] || 34.976 || 2*(5/7)&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt; || | 1 0 2 -2 &gt; || septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma ||
| | [[perfect_fifth|perfect fifth]], 3rd harmonic (octave reduced), diapente
|| [[64_63|64/63]] || 27.264 || 2&lt;span style="font-size: 70%; vertical-align: super;"&gt;6&lt;/span&gt;/(3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*7) || | 6 -2 0 -1 &gt; || septimal comma, Archytas' comma ||
|-
|| [[126_125|126/125]] || 13.795 || (2*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*7)/5&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt; || | 1 2 -3 1 &gt; || starling comma, septimal semicomma ||
| | [[4/3|4/3]]
|| [[225_224|225/224]] || 7.7115 || (3*5)&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;5&lt;/span&gt;*7) || | -5 2 2 -1 &gt; || marvel comma, septimal kleisma ||
| | 498.045
|| [[2401_2400|2401/2400]] || 0.72120 || 7&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;5&lt;/span&gt;*3*5&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;) || | -5 -1 -2 4 &gt; || breedsma ||
| | 2<span style="font-size: 70%; vertical-align: super;">2</span>/3
|| [[4375_4374|4375/4374]] || 0.39576 || (5&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;*7)/(2*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;7&lt;/span&gt;) || | -1 -7 4 1 &gt; || ragisma ||
| | | 2 -1 &gt;
||||||||||~ 11-limit (complete) ||
| | perfect fourth, 3rd subharmonic (octave reduced), diatessaron
|| [[11_10|11/10]] || 165.004 || 11/(2*5) || | -1 0 -1 0 1 &gt; || (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second ||
|-
|| [[12_11|12/11]] || 150.637 || (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3)/11 || | 2 1 0 0 -1 &gt; || (small) (undecimal) neutral second, 3/4-tone ||
| | [[9/8|9/8]]
|| [[22_21|22/21]] || 80.537 || (2*11)/(3*7) || | 1 -1 0 -1 1 &gt; || undecimal minor semitone ||
| | 203.910
|| [[33_32|33/32]] || 53.273 || (3*11)/2&lt;span style="font-size: 70%; vertical-align: super;"&gt;5&lt;/span&gt; || | -5 1 0 0 1 &gt; || undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) ||
| | 3<span style="font-size: 70%; vertical-align: super;">2</span>/2<span style="font-size: 70%; vertical-align: super;">3</span>
|| [
| | | -3 2 &gt;
| | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced)
|-
! colspan="5" | 5-limit (complete)
|-
| | [[5/4|5/4]]
| | 386.314
| | 5/2<span style="font-size: 70%; vertical-align: super;">2</span>
| | | -2 0 1 &gt;
| | (classic) (5-limit) major third, 5th harmonic (octave reduced)
|-
| | [[6/5|6/5]]
| | 315.641
| | (2*3)/5
| | | 1 1 -1 &gt;
| | (classic) (5-limit) minor third
|-
| | [[10/9|10/9]]
| | 182.404
| | (2*5)/3<span style="font-size: 70%; vertical-align: super;">2</span>
| | | 1 -2 1 &gt;
| | classic (whole) tone, classic major second, minor whole tone
|-
| | [[16/15|16/15]]
| | 111.713
| | 2<span style="font-size: 70%; vertical-align: super;">4</span>/(3*5)
| | | 4 -1 -1 &gt;
| | minor diatonic semitone, 15th subharmonic
|-
| | [[25/24|25/24]]
| | 70.672
| | 5<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3)
| | | -3 -1 2 &gt;
| | chroma, (classic) chromatic semitone, Zarlinian semitone
|-
| | [[81/80|81/80]]
| | 21.506
| | (3/2)<span style="font-size: 70%; vertical-align: super;">4</span>/5
| | | -4 4 -1 &gt;
| | syntonic comma, Didymus comma
|-
! colspan="5" | 7-limit (complete)
|-
| | [[7/6|7/6]]
| | 266.871
| | 7/(2*3)
| | | -1 -1 0 1 &gt;
| | (septimal) subminor third, septimal minor third, augmented second
|-
| | [[8/7|8/7]]
| | 231.174
| | 2<span style="font-size: 70%; vertical-align: super;">3</span>/7
| | | 3 0 0 -1 &gt;
| | (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic
|-
| | [[15/14|15/14]]
| | 119.443
| | (3*5)/(2*7)
| | | -1 1 1 -1 &gt;
| | septimal diatonic semitone
|-
| | [[21/20|21/20]]
| | 84.467
| | (3*7)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*5)
| |