Just intonation subgroup: Difference between revisions

Wikispaces>PiotrGrochowski
**Imported revision 614481553 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<span style="display: block; text-align: right;">[[純正律サブグループ|日本語]]</span>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
__FORCETOC__
: This revision was by author [[User:PiotrGrochowski|PiotrGrochowski]] and made on <tt>2017-06-09 14:56:45 UTC</tt>.<br>
-----
: The original revision id was <tt>614481553</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">&lt;span style="display: block; text-align: right;"&gt;[[純正律サブグループ|日本語]]
&lt;/span&gt;
[[toc|flat]]
----
=Definition=
A just intonation //subgroup// is a [[http://en.wikipedia.org/wiki/Free_abelian_group|group]] generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a [[Harmonic Limit|p-limit]] group for some minimal choice of prime p, which is the prime limit of the subgroup.


It is only when the group in question is not the entire p-limit group that we have a just intonation subgroup in the strict sense. Such subgroups come in two flavors: finite [[http://en.wikipedia.org/wiki/Index_of_a_subgroup|index]] and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire p-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full [[3-limit]] (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full 7-limit group, which is generated by 2, 3, 5 and 7. The index can be computed by taking the determinant of the matrix whose rows are the [[monzos]] of the generators.
=Definition=
A just intonation ''subgroup'' is a [http://en.wikipedia.org/wiki/Free_abelian_group group] generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a [[Harmonic_Limit|p-limit]] group for some minimal choice of prime p, which is the prime limit of the subgroup.


A canonical naming system for just intonation subgroups is to give a [[Normal lists|normal interval list]] for the generators of the group, which will also show the [[http://en.wikipedia.org/wiki/Rank_of_an_abelian_group|rank]] of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale. Just intonation subgroups can be described by listing their generators with dots between them; the purpose of using dots is to flag the fact that it is a subgroup which is being referred to. This naming convention is employed below.
It is only when the group in question is not the entire p-limit group that we have a just intonation subgroup in the strict sense. Such subgroups come in two flavors: finite [http://en.wikipedia.org/wiki/Index_of_a_subgroup index] and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire p-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full [[3-limit|3-limit]] (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full 7-limit group, which is generated by 2, 3, 5 and 7. The index can be computed by taking the determinant of the matrix whose rows are the [[monzos|monzos]] of the generators.


=7-limit subgroups=  
A canonical naming system for just intonation subgroups is to give a [[Normal_lists|normal interval list]] for the generators of the group, which will also show the [http://en.wikipedia.org/wiki/Rank_of_an_abelian_group rank] of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale. Just intonation subgroups can be described by listing their generators with dots between them; the purpose of using dots is to flag the fact that it is a subgroup which is being referred to. This naming convention is employed below.
 
=7-limit subgroups=


2.3.7
2.3.7
Ets: 5, 17, 31, 36, 135, 571
Ets: 5, 17, 31, 36, 135, 571


Archytas Diatonic [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]
Archytas Diatonic [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]
Safi al-Din Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]
Safi al-Din Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]


2.5.7
2.5.7
Ets: 6, 25, 31, 35, 47, 171, 239, 379, 410, 789
Ets: 6, 25, 31, 35, 47, 171, 239, 379, 410, 789


2.3.7/5
2.3.7/5
Ets: 10, 29, 31, 41, 70, 171, 241, 412
Ets: 10, 29, 31, 41, 70, 171, 241, 412


2.5/3.7
2.5/3.7
Ets: 12, 15, 42, 57, 270, 327
Ets: 12, 15, 42, 57, 270, 327


2.5.7/3
2.5.7/3
Ets: 9, 31, 40, 50, 81, 90, 171, 261
Ets: 9, 31, 40, 50, 81, 90, 171, 261


2.5/3.7/3
2.5/3.7/3
Ets: 27, 68, 72, 99, 171, 517
Ets: 27, 68, 72, 99, 171, 517


2.27/25.7/3
2.27/25.7/3
Ets: 9
Ets: 9


Line 46: Line 47:


2.9/5.9/7
2.9/5.9/7
Ets: 6, 21, 27, 33, 105, 138, 171, 1848, 2019, 2190, 2361, 2532, 2703, 2874, 3045, 3216, 3387, 3558
Ets: 6, 21, 27, 33, 105, 138, 171, 1848, 2019, 2190, 2361, 2532, 2703, 2874, 3045, 3216, 3387, 3558


The [[Chromatic pairs|Terrain temperament]] subgroup.
The [[Chromatic_pairs|Terrain temperament]] subgroup.


=11-limit subgroups=  
=11-limit subgroups=


2.3.11
2.3.11
Ets: 7, 15, 17, 24, 159, 494, 518, 653
Ets: 7, 15, 17, 24, 159, 494, 518, 653


Line 58: Line 61:


2.5.11
2.5.11
Ets: 6, 7, 9, 13, 15, 22, 37, 87, 320
Ets: 6, 7, 9, 13, 15, 22, 37, 87, 320


2.7.11
2.7.11
Ets: 6, 9, 11, 20, 26, 135, 161, 296
Ets: 6, 9, 11, 20, 26, 135, 161, 296


2.3.5.11
2.3.5.11
Ets: 7, 15, 22, 31, 65, 72, 87, 270, 342, 407, 494
Ets: 7, 15, 22, 31, 65, 72, 87, 270, 342, 407, 494


2.3.7.11
2.3.7.11
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135


The [[Chromatic pairs|Radon temperament]] subgroup, generated by the Ptolemy Intense Chromatic [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]
The [[Chromatic_pairs|Radon temperament]] subgroup, generated by the Ptolemy Intense Chromatic [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]
See: [[Gallery of 2.3.7.11 Subgroup Scales]]
 
See: [[Gallery_of_2.3.7.11_Subgroup_Scales|Gallery of 2.3.7.11 Subgroup Scales]]


2.5.7.11
2.5.7.11
Ets: 6, 15, 31, 35, 37, 109, 618, 960
Ets: 6, 15, 31, 35, 37, 109, 618, 960


2.5/3.7/3.11/3
2.5/3.7/3.11/3
Ets: 33, 41, 49, 57, 106, 204, 253
Ets: 33, 41, 49, 57, 106, 204, 253


The [[Chromatic pairs|Indium temperament]] subgroup.
The [[Chromatic_pairs|Indium temperament]] subgroup.


=13-limit subgroups=  
=13-limit subgroups=


2.3.13
2.3.13
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424


Line 88: Line 99:


2.3.5.13
2.3.5.13
Ets: 15, 19, 34, 53, 87, 130, 140, 246, 270
Ets: 15, 19, 34, 53, 87, 130, 140, 246, 270


The [[Chromatic pairs|Cata]], [[The Archipelago|Trinidad]] and [[The Archipelago|Parizekmic]] temperaments subgroup.
The [[Chromatic_pairs|Cata]], [[The_Archipelago|Trinidad]] and [[The_Archipelago|Parizekmic]] temperaments subgroup.


2.3.7.13
2.3.7.13
Ets: 10, 26, 27, 36, 77, 94, 104, 130, 234
Ets: 10, 26, 27, 36, 77, 94, 104, 130, 234


Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]
Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]
Safi al-Din tuning [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]
Safi al-Din tuning [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]
Ibn Sina tuning [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]
Ibn Sina tuning [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]


2.5.7.13
2.5.7.13
Ets: 7, 10, 17, 27, 37, 84, 121, 400
Ets: 7, 10, 17, 27, 37, 84, 121, 400


The [[Chromatic pairs|Huntington temperament]] subgroup.
The [[Chromatic_pairs|Huntington temperament]] subgroup.


2.5.7.11.13
2.5.7.11.13
Ets: 6, 7, 13, 19, 25, 31, 37
Ets: 6, 7, 13, 19, 25, 31, 37


The [[Chromatic pairs|Roulette temperament]] subgroup
The [[Chromatic_pairs|Roulette temperament]] subgroup


2.3.13/5
2.3.13/5
Ets: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362
Ets: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362


The [[The Archipelago|Barbados temperament]] subgroup.
The [[The_Archipelago|Barbados temperament]] subgroup.


2.3.11/5.13/5
2.3.11/5.13/5
5, 9, 14, 19, 24, 29
5, 9, 14, 19, 24, 29


The [[Chromatic pairs|Bridgetown temperament]] subgroup.
The [[Chromatic_pairs|Bridgetown temperament]] subgroup.


2.3.11/7.13/7
2.3.11/7.13/7
Ets: 5, 7, 12, 17, 29, 46, 75, 196, 271
Ets: 5, 7, 12, 17, 29, 46, 75, 196, 271


The [[Chromatic pairs|Pepperoni temperament]] subgroup.
The [[Chromatic_pairs|Pepperoni temperament]] subgroup.


2.7/5.11/5.13/5
2.7/5.11/5.13/5
Ets: 5, 8, 21, 29, 37, 66, 169, 235
Ets: 5, 8, 21, 29, 37, 66, 169, 235


The [[Chromatic pairs|Tridec temperament]] subgroup.</pre></div>
The [[Chromatic_pairs|Tridec temperament]] subgroup.
<h4>Original HTML content:</h4>
[[Category:just]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Just intonation subgroups&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="display: block; text-align: right;"&gt;&lt;a class="wiki_link" href="/%E7%B4%94%E6%AD%A3%E5%BE%8B%E3%82%B5%E3%83%96%E3%82%B0%E3%83%AB%E3%83%BC%E3%83%97"&gt;日本語&lt;/a&gt;&lt;br /&gt;
[[Category:subgroup]]
&lt;/span&gt;&lt;br /&gt;
[[Category:theory]]
&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#x7-limit subgroups"&gt;7-limit subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#x11-limit subgroups"&gt;11-limit subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#x13-limit subgroups"&gt;13-limit subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;hr /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Definition&lt;/h1&gt;
A just intonation &lt;em&gt;subgroup&lt;/em&gt; is a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Free_abelian_group" rel="nofollow"&gt;group&lt;/a&gt; generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;p-limit&lt;/a&gt; group for some minimal choice of prime p, which is the prime limit of the subgroup.&lt;br /&gt;
&lt;br /&gt;
It is only when the group in question is not the entire p-limit group that we have a just intonation subgroup in the strict sense. Such subgroups come in two flavors: finite &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Index_of_a_subgroup" rel="nofollow"&gt;index&lt;/a&gt; and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire p-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full &lt;a class="wiki_link" href="/3-limit"&gt;3-limit&lt;/a&gt; (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full 7-limit group, which is generated by 2, 3, 5 and 7. The index can be computed by taking the determinant of the matrix whose rows are the &lt;a class="wiki_link" href="/monzos"&gt;monzos&lt;/a&gt; of the generators.&lt;br /&gt;
&lt;br /&gt;
A canonical naming system for just intonation subgroups is to give a &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal interval list&lt;/a&gt; for the generators of the group, which will also show the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rank_of_an_abelian_group" rel="nofollow"&gt;rank&lt;/a&gt; of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale. Just intonation subgroups can be described by listing their generators with dots between them; the purpose of using dots is to flag the fact that it is a subgroup which is being referred to. This naming convention is employed below.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="x7-limit subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;7-limit subgroups&lt;/h1&gt;
&lt;br /&gt;
2.3.7&lt;br /&gt;
Ets: 5, 17, 31, 36, 135, 571&lt;br /&gt;
&lt;br /&gt;
Archytas Diatonic [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]&lt;br /&gt;
Safi al-Din Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
2.5.7&lt;br /&gt;
Ets: 6, 25, 31, 35, 47, 171, 239, 379, 410, 789&lt;br /&gt;
&lt;br /&gt;
2.3.7/5&lt;br /&gt;
Ets: 10, 29, 31, 41, 70, 171, 241, 412&lt;br /&gt;
&lt;br /&gt;
2.5/3.7&lt;br /&gt;
Ets: 12, 15, 42, 57, 270, 327&lt;br /&gt;
&lt;br /&gt;
2.5.7/3&lt;br /&gt;
Ets: 9, 31, 40, 50, 81, 90, 171, 261&lt;br /&gt;
&lt;br /&gt;
2.5/3.7/3&lt;br /&gt;
Ets: 27, 68, 72, 99, 171, 517&lt;br /&gt;
&lt;br /&gt;
2.27/25.7/3&lt;br /&gt;
Ets: 9&lt;br /&gt;
&lt;br /&gt;
In effect, equivalent to 9EDO, which has a 7-limit version given by [27/25, 7/6, 63/50, 49/36, 72/49, 100/63, 12/7, 50/27, 2]&lt;br /&gt;
&lt;br /&gt;
2.9/5.9/7&lt;br /&gt;
Ets: 6, 21, 27, 33, 105, 138, 171, 1848, 2019, 2190, 2361, 2532, 2703, 2874, 3045, 3216, 3387, 3558&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Terrain temperament&lt;/a&gt; subgroup.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="x11-limit subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;11-limit subgroups&lt;/h1&gt;
&lt;br /&gt;
2.3.11&lt;br /&gt;
Ets: 7, 15, 17, 24, 159, 494, 518, 653&lt;br /&gt;
&lt;br /&gt;
Zalzal, al-Farabi's version [9/8, 27/22, 4/3, 3/2, 18/11, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
2.5.11&lt;br /&gt;
Ets: 6, 7, 9, 13, 15, 22, 37, 87, 320&lt;br /&gt;
&lt;br /&gt;
2.7.11&lt;br /&gt;
Ets: 6, 9, 11, 20, 26, 135, 161, 296&lt;br /&gt;
&lt;br /&gt;
2.3.5.11&lt;br /&gt;
Ets: 7, 15, 22, 31, 65, 72, 87, 270, 342, 407, 494&lt;br /&gt;
&lt;br /&gt;
2.3.7.11&lt;br /&gt;
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Radon temperament&lt;/a&gt; subgroup, generated by the Ptolemy Intense Chromatic [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]&lt;br /&gt;
See: &lt;a class="wiki_link" href="/Gallery%20of%202.3.7.11%20Subgroup%20Scales"&gt;Gallery of 2.3.7.11 Subgroup Scales&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
2.5.7.11&lt;br /&gt;
Ets: 6, 15, 31, 35, 37, 109, 618, 960&lt;br /&gt;
&lt;br /&gt;
2.5/3.7/3.11/3&lt;br /&gt;
Ets: 33, 41, 49, 57, 106, 204, 253&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Indium temperament&lt;/a&gt; subgroup.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="x13-limit subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;13-limit subgroups&lt;/h1&gt;
&lt;br /&gt;
2.3.13&lt;br /&gt;
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424&lt;br /&gt;
&lt;br /&gt;
Mustaqim mode, Ibn Sina [9/8, 39/32, 4/3, 3/2, 13/8, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
2.3.5.13&lt;br /&gt;
Ets: 15, 19, 34, 53, 87, 130, 140, 246, 270&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Cata&lt;/a&gt;, &lt;a class="wiki_link" href="/The%20Archipelago"&gt;Trinidad&lt;/a&gt; and &lt;a class="wiki_link" href="/The%20Archipelago"&gt;Parizekmic&lt;/a&gt; temperaments subgroup.&lt;br /&gt;
&lt;br /&gt;
2.3.7.13&lt;br /&gt;
Ets: 10, 26, 27, 36, 77, 94, 104, 130, 234&lt;br /&gt;
&lt;br /&gt;
Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]&lt;br /&gt;
Safi al-Din tuning [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]&lt;br /&gt;
Ibn Sina tuning [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]&lt;br /&gt;
&lt;br /&gt;
2.5.7.13&lt;br /&gt;
Ets: 7, 10, 17, 27, 37, 84, 121, 400&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Huntington temperament&lt;/a&gt; subgroup.&lt;br /&gt;
&lt;br /&gt;
2.5.7.11.13&lt;br /&gt;
Ets: 6, 7, 13, 19, 25, 31, 37&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Roulette temperament&lt;/a&gt; subgroup&lt;br /&gt;
&lt;br /&gt;
2.3.13/5&lt;br /&gt;
Ets: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/The%20Archipelago"&gt;Barbados temperament&lt;/a&gt; subgroup.&lt;br /&gt;
&lt;br /&gt;
2.3.11/5.13/5&lt;br /&gt;
5, 9, 14, 19, 24, 29&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Bridgetown temperament&lt;/a&gt; subgroup.&lt;br /&gt;
&lt;br /&gt;
2.3.11/7.13/7&lt;br /&gt;
Ets: 5, 7, 12, 17, 29, 46, 75, 196, 271&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Pepperoni temperament&lt;/a&gt; subgroup.&lt;br /&gt;
&lt;br /&gt;
2.7/5.11/5.13/5&lt;br /&gt;
Ets: 5, 8, 21, 29, 37, 66, 169, 235&lt;br /&gt;
&lt;br /&gt;
The &lt;a class="wiki_link" href="/Chromatic%20pairs"&gt;Tridec temperament&lt;/a&gt; subgroup.&lt;/body&gt;&lt;/html&gt;</pre></div>