JI: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 296282210 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 296282534 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-29 06:08:35 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-29 06:14:04 UTC</tt>.<br>
: The original revision id was <tt>296282210</tt>.<br>
: The original revision id was <tt>296282534</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 9: Line 9:
----
----
=Just Intonation explained=  
=Just Intonation explained=  
JHI, or [[Just Intonation]] describes [[Gallery of Just Intervals|intervals]] between pitches by specifying ratios (of [[http://en.wikipedia.org/wiki/Rational_number|rational numbers]]) between the frequencies of pitches. This is sometimes distinguished from //rational intonation// by requiring that the ratios be ones of low complexity (as for example measured by [[Tenney height]]) but there is no clear dividing line. The matter is partially a question of intent. The rank two tuning system in which all intervals are given as combinations of the just perfect fourth, 4/3, and the just minor third, 6/5, would seem to be a nonoctave 5-limit just intonation system by definition. In practice, it can hardly be used except as a rank two 7-limit [[Microtempering|microtempering]] system because of certain very accurate approximations to the octave and to seven limit intervals: (6/5)^2/(4/3) = 27/25, the semitone maximus or just minor second; and (27/25)^9 is less than a cent short of an octave, while (27/25)^2 is almost precisely 7/6, the [[http://en.wikipedia.org/wiki/Septimal_minor_third|septimal minor third]].
JI, or [[Just Intonation]] describes [[Gallery of Just Intervals|intervals]] between pitches by specifying ratios (of [[http://en.wikipedia.org/wiki/Rational_number|rational numbers]]) between the frequencies of pitches. This is sometimes distinguished from //rational intonation// by requiring that the ratios be ones of low complexity (as for example measured by [[Benedetti height]]) but there is no clear dividing line. The matter is partially a question of intent. The rank two tuning system in which all intervals are given as combinations of the just perfect fourth, 4/3, and the just minor third, 6/5, would seem to be a nonoctave 5-limit just intonation system by definition. In practice, it can hardly be used except as a rank two 7-limit [[Microtempering|microtempering]] system because of certain very accurate approximations to the octave and to seven limit intervals: (6/5)^2/(4/3) = 27/25, the semitone maximus or just minor second; and (27/25)^9 is less than a cent short of an octave, while (27/25)^2 is almost precisely 7/6, the [[http://en.wikipedia.org/wiki/Septimal_minor_third|septimal minor third]].


If you are used to speaking only in note names, you may need to study the relation between frequency and [[http://en.wikipedia.org/wiki/Pitch_%28music%29|pitch]]. Kyle Gann's //[[http://www.kylegann.com/tuning.html|Just Intonation Explained]]// is one good reference. A transparent illustration and one of just intonation's acoustic bases is the [[OverToneSeries|harmonic series]].
If you are used to speaking only in note names, you may need to study the relation between frequency and [[http://en.wikipedia.org/wiki/Pitch_%28music%29|pitch]]. Kyle Gann's //[[http://www.kylegann.com/tuning.html|Just Intonation Explained]]// is one good reference. A transparent illustration and one of just intonation's acoustic bases is the [[OverToneSeries|harmonic series]].
Line 68: Line 68:
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;hr /&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;hr /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Just Intonation explained"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Just Intonation explained&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Just Intonation explained"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Just Intonation explained&lt;/h1&gt;
  JHI, or &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt; describes &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;intervals&lt;/a&gt; between pitches by specifying ratios (of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rational_number" rel="nofollow"&gt;rational numbers&lt;/a&gt;) between the frequencies of pitches. This is sometimes distinguished from &lt;em&gt;rational intonation&lt;/em&gt; by requiring that the ratios be ones of low complexity (as for example measured by &lt;a class="wiki_link" href="/Tenney%20height"&gt;Tenney height&lt;/a&gt;) but there is no clear dividing line. The matter is partially a question of intent. The rank two tuning system in which all intervals are given as combinations of the just perfect fourth, 4/3, and the just minor third, 6/5, would seem to be a nonoctave 5-limit just intonation system by definition. In practice, it can hardly be used except as a rank two 7-limit &lt;a class="wiki_link" href="/Microtempering"&gt;microtempering&lt;/a&gt; system because of certain very accurate approximations to the octave and to seven limit intervals: (6/5)^2/(4/3) = 27/25, the semitone maximus or just minor second; and (27/25)^9 is less than a cent short of an octave, while (27/25)^2 is almost precisely 7/6, the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Septimal_minor_third" rel="nofollow"&gt;septimal minor third&lt;/a&gt;.&lt;br /&gt;
  JI, or &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt; describes &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;intervals&lt;/a&gt; between pitches by specifying ratios (of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rational_number" rel="nofollow"&gt;rational numbers&lt;/a&gt;) between the frequencies of pitches. This is sometimes distinguished from &lt;em&gt;rational intonation&lt;/em&gt; by requiring that the ratios be ones of low complexity (as for example measured by &lt;a class="wiki_link" href="/Benedetti%20height"&gt;Benedetti height&lt;/a&gt;) but there is no clear dividing line. The matter is partially a question of intent. The rank two tuning system in which all intervals are given as combinations of the just perfect fourth, 4/3, and the just minor third, 6/5, would seem to be a nonoctave 5-limit just intonation system by definition. In practice, it can hardly be used except as a rank two 7-limit &lt;a class="wiki_link" href="/Microtempering"&gt;microtempering&lt;/a&gt; system because of certain very accurate approximations to the octave and to seven limit intervals: (6/5)^2/(4/3) = 27/25, the semitone maximus or just minor second; and (27/25)^9 is less than a cent short of an octave, while (27/25)^2 is almost precisely 7/6, the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Septimal_minor_third" rel="nofollow"&gt;septimal minor third&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If you are used to speaking only in note names, you may need to study the relation between frequency and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Pitch_%28music%29" rel="nofollow"&gt;pitch&lt;/a&gt;. Kyle Gann's &lt;em&gt;&lt;a class="wiki_link_ext" href="http://www.kylegann.com/tuning.html" rel="nofollow"&gt;Just Intonation Explained&lt;/a&gt;&lt;/em&gt; is one good reference. A transparent illustration and one of just intonation's acoustic bases is the &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonic series&lt;/a&gt;.&lt;br /&gt;
If you are used to speaking only in note names, you may need to study the relation between frequency and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Pitch_%28music%29" rel="nofollow"&gt;pitch&lt;/a&gt;. Kyle Gann's &lt;em&gt;&lt;a class="wiki_link_ext" href="http://www.kylegann.com/tuning.html" rel="nofollow"&gt;Just Intonation Explained&lt;/a&gt;&lt;/em&gt; is one good reference. A transparent illustration and one of just intonation's acoustic bases is the &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonic series&lt;/a&gt;.&lt;br /&gt;
Retrieved from "https://en.xen.wiki/w/JI"