Interior product: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 278552322 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 278559412 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-23 14:07:45 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-23 14:31:17 UTC</tt>.<br>
: The original revision id was <tt>278552322</tt>.<br>
: The original revision id was <tt>278559412</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 19: Line 19:
Another application is the use of the interior product to define the intervals of the [[abstract regular temperament]] given by a wedgie W. In this case, we use W∨q to define a multival which represents the tempered interval which q is tempered to. For this to make sense, we need a way to define the tuning for such multivals, which can be done in a variety of ways. One is as follows: let S be an element of tuning space defining a tuning for the abstract regular temperament denoted by W, and T a truncated version of S where S is shortened to only the first r commas, where r is the rank of W. Form the matrix [W∨2, W∨3, ... W∨R], where R is the r-th prime. Let U be the transpose of the pseudoinverse of this matrix, and let V = T∙U (the matrix product.) Then for any multival W∨q in the abstract regular temperament, the dot product (W∨q).V gives the tuning of W∨q.
Another application is the use of the interior product to define the intervals of the [[abstract regular temperament]] given by a wedgie W. In this case, we use W∨q to define a multival which represents the tempered interval which q is tempered to. For this to make sense, we need a way to define the tuning for such multivals, which can be done in a variety of ways. One is as follows: let S be an element of tuning space defining a tuning for the abstract regular temperament denoted by W, and T a truncated version of S where S is shortened to only the first r commas, where r is the rank of W. Form the matrix [W∨2, W∨3, ... W∨R], where R is the r-th prime. Let U be the transpose of the pseudoinverse of this matrix, and let V = T∙U (the matrix product.) Then for any multival W∨q in the abstract regular temperament, the dot product (W∨q).V gives the tuning of W∨q.


The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Hec = &lt;&lt;&lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit [[Marvel family#Hecate|hecate temperament]]. Then Hec∨45/44 = &lt;&lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Hec∨64/63 = &lt;&lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Hec∨245/242 = &lt;&lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Hec∨99/98 = &lt;&lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Hec∨100/99 = &lt;&lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic,  Hec∨243/242 = &lt;&lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Hec∨3136/3125 = &lt;&lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Hec∨6250/6237 = &lt;&lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Hec∨9801/9800 = &lt;&lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.</pre></div>
The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Marv = &lt;&lt;&lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit [[Marvel family#Marvel|marvel temperament]]. Then Marv∨45/44 = &lt;&lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Marv∨64/63 = &lt;&lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Marv∨245/242 = &lt;&lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Marv∨99/98 = &lt;&lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Marv∨100/99 = &lt;&lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic,  Marv∨243/242 = &lt;&lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Marv∨3136/3125 = &lt;&lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Marv∨6250/6237 = &lt;&lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Marv∨9801/9800 = &lt;&lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.
 
The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&lt;0 0 -1 -2 3|, &lt;0 1 0 2 -1|, &lt;0 2 -2 0 4|, &lt;0 -3 1 -4 0|, &lt;-1 0 0 5 -12|, &lt;-2 0 -5 0 -9|, &lt;3 0 12 9 0|, &lt;2 5 0 0 19|, &lt;-1 -12 0 -19 0|, &lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&lt;1 0 0 -5 12|, &lt;0 1 0 2 -1|, &lt;0 0 1 2 -3|], the normal val list for 11-limit marvel.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Interior product&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;interior product&lt;/em&gt; is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;n-map&lt;/a&gt;, a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedge product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn).&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Interior product&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;interior product&lt;/em&gt; is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;n-map&lt;/a&gt;, a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedge product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn).&lt;br /&gt;
Line 34: Line 36:
Another application is the use of the interior product to define the intervals of the &lt;a class="wiki_link" href="/abstract%20regular%20temperament"&gt;abstract regular temperament&lt;/a&gt; given by a wedgie W. In this case, we use W∨q to define a multival which represents the tempered interval which q is tempered to. For this to make sense, we need a way to define the tuning for such multivals, which can be done in a variety of ways. One is as follows: let S be an element of tuning space defining a tuning for the abstract regular temperament denoted by W, and T a truncated version of S where S is shortened to only the first r commas, where r is the rank of W. Form the matrix [W∨2, W∨3, ... W∨R], where R is the r-th prime. Let U be the transpose of the pseudoinverse of this matrix, and let V = T∙U (the matrix product.) Then for any multival W∨q in the abstract regular temperament, the dot product (W∨q).V gives the tuning of W∨q.&lt;br /&gt;
Another application is the use of the interior product to define the intervals of the &lt;a class="wiki_link" href="/abstract%20regular%20temperament"&gt;abstract regular temperament&lt;/a&gt; given by a wedgie W. In this case, we use W∨q to define a multival which represents the tempered interval which q is tempered to. For this to make sense, we need a way to define the tuning for such multivals, which can be done in a variety of ways. One is as follows: let S be an element of tuning space defining a tuning for the abstract regular temperament denoted by W, and T a truncated version of S where S is shortened to only the first r commas, where r is the rank of W. Form the matrix [W∨2, W∨3, ... W∨R], where R is the r-th prime. Let U be the transpose of the pseudoinverse of this matrix, and let V = T∙U (the matrix product.) Then for any multival W∨q in the abstract regular temperament, the dot product (W∨q).V gives the tuning of W∨q.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Hec = &amp;lt;&amp;lt;&amp;lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit &lt;a class="wiki_link" href="/Marvel%20family#Hecate"&gt;hecate temperament&lt;/a&gt;. Then Hec∨45/44 = &amp;lt;&amp;lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Hec∨64/63 = &amp;lt;&amp;lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Hec∨245/242 = &amp;lt;&amp;lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Hec∨99/98 = &amp;lt;&amp;lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Hec∨100/99 = &amp;lt;&amp;lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic,  Hec∨243/242 = &amp;lt;&amp;lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Hec∨3136/3125 = &amp;lt;&amp;lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Hec∨6250/6237 = &amp;lt;&amp;lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Hec∨9801/9800 = &amp;lt;&amp;lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.&lt;/body&gt;&lt;/html&gt;</pre></div>
The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Marv = &amp;lt;&amp;lt;&amp;lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit &lt;a class="wiki_link" href="/Marvel%20family#Marvel"&gt;marvel temperament&lt;/a&gt;. Then Marv∨45/44 = &amp;lt;&amp;lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Marv∨64/63 = &amp;lt;&amp;lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Marv∨245/242 = &amp;lt;&amp;lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Marv∨99/98 = &amp;lt;&amp;lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Marv∨100/99 = &amp;lt;&amp;lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic,  Marv∨243/242 = &amp;lt;&amp;lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Marv∨3136/3125 = &amp;lt;&amp;lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Marv∨6250/6237 = &amp;lt;&amp;lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Marv∨9801/9800 = &amp;lt;&amp;lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.&lt;br /&gt;
&lt;br /&gt;
The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&amp;lt;0 0 -1 -2 3|, &amp;lt;0 1 0 2 -1|, &amp;lt;0 2 -2 0 4|, &amp;lt;0 -3 1 -4 0|, &amp;lt;-1 0 0 5 -12|, &amp;lt;-2 0 -5 0 -9|, &amp;lt;3 0 12 9 0|, &amp;lt;2 5 0 0 19|, &amp;lt;-1 -12 0 -19 0|, &amp;lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&amp;lt;1 0 0 -5 12|, &amp;lt;0 1 0 2 -1|, &amp;lt;0 0 1 2 -3|], the normal val list for 11-limit marvel.&lt;/body&gt;&lt;/html&gt;</pre></div>