Interior product: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 302945934 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 302946056 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-18 03:05:00 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-18 03:09:21 UTC</tt>.<br>
: The original revision id was <tt>302945934</tt>.<br>
: The original revision id was <tt>302946056</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 24: Line 24:
The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Marv = &lt;&lt;&lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit [[Marvel family#Marvel|marvel temperament]]. Then Marv∨45/44 = &lt;&lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Marv∨64/63 = &lt;&lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Marv∨245/242 = &lt;&lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Marv∨99/98 = &lt;&lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Marv∨100/99 = &lt;&lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic, Marv∨243/242 = &lt;&lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Marv∨3136/3125 = &lt;&lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Marv∨6250/6237 = &lt;&lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Marv∨2200/2187 = &lt;&lt;-1 8 14 -23 15 25 -33 10, -81 -113||, garibaldi, Marv∨9801/9800 = &lt;&lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.
The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Marv = &lt;&lt;&lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit [[Marvel family#Marvel|marvel temperament]]. Then Marv∨45/44 = &lt;&lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Marv∨64/63 = &lt;&lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Marv∨245/242 = &lt;&lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Marv∨99/98 = &lt;&lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Marv∨100/99 = &lt;&lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic, Marv∨243/242 = &lt;&lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Marv∨3136/3125 = &lt;&lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Marv∨6250/6237 = &lt;&lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Marv∨2200/2187 = &lt;&lt;-1 8 14 -23 15 25 -33 10, -81 -113||, garibaldi, Marv∨9801/9800 = &lt;&lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.


The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&lt;0 0 -1 -2 3|, &lt;0 1 0 2 -1|, &lt;0 2 -2 0 4|, &lt;0 -3 1 -4 0|, &lt;-1 0 0 5 -12|, &lt;-2 0 -5 0 -9|, &lt;3 0 12 9 0|, &lt;2 5 0 0 19|, &lt;-1 -12 0 -19 0|, &lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&lt;1 0 0 -5 12|, &lt;0 1 0 2 -1|, &lt;0 0 1 2 -3|], the normal val list for 11-limit marvel.</pre></div>
The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&lt;0 0 -1 -2 3|, &lt;0 1 0 2 -1|, &lt;0 2 -2 0 4|, &lt;0 -3 1 -4 0|, &lt;-1 0 0 5 -12|, &lt;-2 0 -5 0 -9|, &lt;3 0 12 9 0|, &lt;2 5 0 0 19|, &lt;-1 -12 0 -19 0|, &lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&lt;1 0 0 -5 12|, &lt;0 1 0 2 -1|, &lt;0 0 1 2 -3|], the normal val list for 11-limit marvel. In practice this method nearly always suffices.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Interior product&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:4:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:4 --&gt;&lt;!-- ws:start:WikiTextTocRule:5: --&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:5 --&gt;&lt;!-- ws:start:WikiTextTocRule:6: --&gt; | &lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:6 --&gt;&lt;!-- ws:start:WikiTextTocRule:7: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Interior product&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:4:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:4 --&gt;&lt;!-- ws:start:WikiTextTocRule:5: --&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:5 --&gt;&lt;!-- ws:start:WikiTextTocRule:6: --&gt; | &lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:6 --&gt;&lt;!-- ws:start:WikiTextTocRule:7: --&gt;
Line 44: Line 44:
The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Marv = &amp;lt;&amp;lt;&amp;lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit &lt;a class="wiki_link" href="/Marvel%20family#Marvel"&gt;marvel temperament&lt;/a&gt;. Then Marv∨45/44 = &amp;lt;&amp;lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Marv∨64/63 = &amp;lt;&amp;lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Marv∨245/242 = &amp;lt;&amp;lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Marv∨99/98 = &amp;lt;&amp;lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Marv∨100/99 = &amp;lt;&amp;lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic, Marv∨243/242 = &amp;lt;&amp;lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Marv∨3136/3125 = &amp;lt;&amp;lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Marv∨6250/6237 = &amp;lt;&amp;lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Marv∨2200/2187 = &amp;lt;&amp;lt;-1 8 14 -23 15 25 -33 10, -81 -113||, garibaldi, Marv∨9801/9800 = &amp;lt;&amp;lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.&lt;br /&gt;
The interior product can also be used to add a comma to a p-limit temperament of rank r, producing a rank r-1 temperament which supports it. For instance, Marv = &amp;lt;&amp;lt;&amp;lt;1 2 -3 -2 1 -4 -5 12 9 -19||| is the wedgie for 11-limit &lt;a class="wiki_link" href="/Marvel%20family#Marvel"&gt;marvel temperament&lt;/a&gt;. Then Marv∨45/44 = &amp;lt;&amp;lt;4 -3 2 5 -14 -8 -6 13 22 7||, 11-limit negri, Marv∨64/63 = &amp;lt;&amp;lt;-2 4 4 -10 11 12 -9 -2 -37 -42||, pajarous, Marv∨245/242 = &amp;lt;&amp;lt;11 -6 10 7 -35 -15 -27 40 37 -15||, septimin, Marv∨99/98 = &amp;lt;&amp;lt;-7 3 -8 -2 21 7 21 -27 -15 22||, orwell, Marv∨100/99 = &amp;lt;&amp;lt;5 1 12 -8 -10 5 -30 25 -22 -64||, magic, Marv∨243/242 = &amp;lt;&amp;lt;6 -7 -2 15 -25 -20 3 15 59 49||, miracle, Marv∨3136/3125 = &amp;lt;&amp;lt;-1 -4 -10 13 -4 -13 24 -12 44 71||, meanpop, Marv∨6250/6237 = &amp;lt;&amp;lt;6 5 22 -21 -6 18 -54 37 -66 -135||, catakleismic, Marv∨2200/2187 = &amp;lt;&amp;lt;-1 8 14 -23 15 25 -33 10, -81 -113||, garibaldi, Marv∨9801/9800 = &amp;lt;&amp;lt;-12 2 -20 6 31 2 51 -52 7 86||, wizard.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&amp;lt;0 0 -1 -2 3|, &amp;lt;0 1 0 2 -1|, &amp;lt;0 2 -2 0 4|, &amp;lt;0 -3 1 -4 0|, &amp;lt;-1 0 0 5 -12|, &amp;lt;-2 0 -5 0 -9|, &amp;lt;3 0 12 9 0|, &amp;lt;2 5 0 0 19|, &amp;lt;-1 -12 0 -19 0|, &amp;lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&amp;lt;1 0 0 -5 12|, &amp;lt;0 1 0 2 -1|, &amp;lt;0 0 1 2 -3|], the normal val list for 11-limit marvel.&lt;/body&gt;&lt;/html&gt;</pre></div>
The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&amp;lt;0 0 -1 -2 3|, &amp;lt;0 1 0 2 -1|, &amp;lt;0 2 -2 0 4|, &amp;lt;0 -3 1 -4 0|, &amp;lt;-1 0 0 5 -12|, &amp;lt;-2 0 -5 0 -9|, &amp;lt;3 0 12 9 0|, &amp;lt;2 5 0 0 19|, &amp;lt;-1 -12 0 -19 0|, &amp;lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&amp;lt;1 0 0 -5 12|, &amp;lt;0 1 0 2 -1|, &amp;lt;0 0 1 2 -3|], the normal val list for 11-limit marvel. In practice this method nearly always suffices.&lt;/body&gt;&lt;/html&gt;</pre></div>