Equivalence continuum: Difference between revisions
ArrowHead294 (talk | contribs) |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 3: | Line 3: | ||
== Geometric interpretation == | == Geometric interpretation == | ||
Mathematically, the rank-''k'' '''equivalence continuum''' C(''k'', ''T'') associated with a rank-''r'' temperament ''T'' on a rank-''n'' subgroup ''S'' is the space of [[Mathematical theory of saturation|saturated]] ({{nowrap|''n | Mathematically, the rank-''k'' '''equivalence continuum''' C(''k'', ''T'') associated with a rank-''r'' temperament ''T'' on a rank-''n'' subgroup ''S'' is the space of [[Mathematical theory of saturation|saturated]] ({{nowrap|''n − k''}})-dimensional sublattices of the [[kernel]] (set of all intervals tempered out) of ''T'', the rank-({{nowrap|''n − r''}}) lattice of commas tempered out by ''T''. This is a set of rational points on the Grassmannian {{nowrap|'''G''' {{=}} '''Gr'''(''n − k'', ''n − r'')}} of ({{nowrap|''n − k''}})-dimensional vector subspaces of '''R'''<sup>{{nowrap|''n'' − ''r''}}</sup>, identifying '''R'''<sup>{{nowrap|''n'' − ''r''}}</sup> with the '''R'''-vector space {{nowrap|ker(''T'') ⊗ '''R'''}}. | ||
=== 1-dimensional continua === | === 1-dimensional continua === | ||
Line 17: | Line 17: | ||
* [[Septimal meantone]] tempers out {{nowrap|81/80 {{=}} '''u'''<sub>''x''</sub>}} {{nowrap|{{=}} (1, 0, 0)}} and {{nowrap|126/125 {{=}} '''u'''<sub>''y''</sub>}} {{nowrap|{{=}} (0, 1, 0)}}, thus corresponds to the plane {{nowrap|''z'' {{=}} 0}}. This corresponds to {{nowrap|'''v''' {{=}} (0, 0, 1)}}. | * [[Septimal meantone]] tempers out {{nowrap|81/80 {{=}} '''u'''<sub>''x''</sub>}} {{nowrap|{{=}} (1, 0, 0)}} and {{nowrap|126/125 {{=}} '''u'''<sub>''y''</sub>}} {{nowrap|{{=}} (0, 1, 0)}}, thus corresponds to the plane {{nowrap|''z'' {{=}} 0}}. This corresponds to {{nowrap|'''v''' {{=}} (0, 0, 1)}}. | ||
* [[Valentine]] tempers out {{nowrap|1029/1024 {{=}} '''u'''<sub>''z''</sub>}} {{nowrap|{{=}} (0, 0, 1)}} and {{nowrap|126/125 {{=}} '''u'''<sub>''y''</sub>}} {{nowrap|{{=}} (0, 1, 0)}}. This corresponds to {{nowrap|'''v''' {{=}} (1, 0, 0)}}. | * [[Valentine]] tempers out {{nowrap|1029/1024 {{=}} '''u'''<sub>''z''</sub>}} {{nowrap|{{=}} (0, 0, 1)}} and {{nowrap|126/125 {{=}} '''u'''<sub>''y''</sub>}} {{nowrap|{{=}} (0, 1, 0)}}. This corresponds to {{nowrap|'''v''' {{=}} (1, 0, 0)}}. | ||
* [[Mohajira]] tempers out {{nowrap|81/80 {{=}} '''u'''<sub>''x''</sub>}} {{nowrap|{{=}} (1, 0, 0)}} and {{nowrap|6144/6125 {{=}} '''u'''<sub>''y''</sub> | * [[Mohajira]] tempers out {{nowrap|81/80 {{=}} '''u'''<sub>''x''</sub>}} {{nowrap|{{=}} (1, 0, 0)}} and {{nowrap|6144/6125 {{=}} '''u'''<sub>''y''</sub> − '''u'''<sub>''z''</sub>}} {{nowrap|{{=}} (0, 1, −1)}}. This corresponds to {{nowrap|'''v''' {{=}} (0, 1, 1)}}. | ||
* [[Hemithirds]] tempers out {{nowrap|1029/1024 {{=}} '''u'''<sub>''z''</sub>}} {{nowrap|{{=}} (0, 0, 1)}} and {{nowrap|3136/3125 {{=}} 2'''u'''<sub>''x''</sub> + '''u'''<sub>''y''</sub>}} {{nowrap|{{=}} (2, 1, 0)}}. This corresponds to {{nowrap|'''v''' {{=}} (1, | * [[Hemithirds]] tempers out {{nowrap|1029/1024 {{=}} '''u'''<sub>''z''</sub>}} {{nowrap|{{=}} (0, 0, 1)}} and {{nowrap|3136/3125 {{=}} 2'''u'''<sub>''x''</sub> + '''u'''<sub>''y''</sub>}} {{nowrap|{{=}} (2, 1, 0)}}. This corresponds to {{nowrap|'''v''' {{=}} (1, −2, 0)}}. | ||
* [[Miracle]] tempers out {{nowrap|1029/1024 {{=}} '''u'''<sub>''z''</sub>}} {{nowrap|{{=}} (0, 0, 1)}} and {{nowrap|225/224 {{=}} '''u'''<sub>''x''</sub> | * [[Miracle]] tempers out {{nowrap|1029/1024 {{=}} '''u'''<sub>''z''</sub>}} {{nowrap|{{=}} (0, 0, 1)}} and {{nowrap|225/224 {{=}} '''u'''<sub>''x''</sub> − '''u'''<sub>''y''</sub>}} {{nowrap|{{=}} (1, −1, 0)}}. This corresponds to {{nowrap|'''v''' {{=}} (1, 1, 0)}}. | ||
== Examples == | == Examples == |