Hobbit: Difference between revisions
Wikispaces>genewardsmith **Imported revision 209342662 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 209350434 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-10 | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-10 15:01:25 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>209350434</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A //hobbit scale// is a generalization of [[MOSScales|MOS]] for arbitrary regular temperaments which is a sort of cousin to [[Dwarves|dwarf scales]]; examples may be found on the [[Scalesmith]] page. The idea is that MOS scales give us a means of contructing scales for a [[ | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A //hobbit scale// is a generalization of [[MOSScales|MOS]] for arbitrary regular temperaments which is a sort of cousin to [[Dwarves|dwarf scales]]; examples may be found on the [[Scalesmith]] page. The idea is that MOS scales give us a means of contructing scales for a [[Regular+Temperaments#Rank 2 (including "linear") temperaments|rank two regular temperament]] which gives priority to the intervals of least complexity in that temperament, and so makes efficient use of it; a hobbit does the same in higher ranks, and so using them is one way to make higher ranks, including especially the interesting rank three case, accessible for musical purposes. | ||
Given a regular temperament and an equal temperament val v which supports (or belongs to) the temperament, there is a unique scale for the temperament, which can be tuned to any tuning of the temperament, containing v[1] notes to the octave. | Given a regular temperament and an equal temperament val v which supports (or belongs to) the temperament, there is a unique scale for the temperament, which can be tuned to any tuning of the temperament, containing v[1] notes to the octave. | ||
Line 26: | Line 26: | ||
After applying such a tuning, we discover than there seems to be a certain irregularity or inconsistency in action, in that some of the 11-limit intervals do not stem from the mapping for minerva, but represent additional temperings by 243/242 or 4000/3993. By adding one of these, we can flatten out the irregularity to a corresponding rank two temperament; by adding both, we obtain the rank one temperament with val <65 103 151 183 225|, giving a scale with steps 2433333242432424233333. Examples of this sort inconsistency seem to increase with increasing rank.</pre></div> | After applying such a tuning, we discover than there seems to be a certain irregularity or inconsistency in action, in that some of the 11-limit intervals do not stem from the mapping for minerva, but represent additional temperings by 243/242 or 4000/3993. By adding one of these, we can flatten out the irregularity to a corresponding rank two temperament; by adding both, we obtain the rank one temperament with val <65 103 151 183 225|, giving a scale with steps 2433333242432424233333. Examples of this sort inconsistency seem to increase with increasing rank.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Hobbits</title></head><body>A <em>hobbit scale</em> is a generalization of <a class="wiki_link" href="/MOSScales">MOS</a> for arbitrary regular temperaments which is a sort of cousin to <a class="wiki_link" href="/Dwarves">dwarf scales</a>; examples may be found on the <a class="wiki_link" href="/Scalesmith">Scalesmith</a> page. The idea is that MOS scales give us a means of contructing scales for a [[ | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Hobbits</title></head><body>A <em>hobbit scale</em> is a generalization of <a class="wiki_link" href="/MOSScales">MOS</a> for arbitrary regular temperaments which is a sort of cousin to <a class="wiki_link" href="/Dwarves">dwarf scales</a>; examples may be found on the <a class="wiki_link" href="/Scalesmith">Scalesmith</a> page. The idea is that MOS scales give us a means of contructing scales for a [[Regular+Temperaments#Rank 2 (including &quot;linear&quot;) temperaments|rank two regular temperament]] which gives priority to the intervals of least complexity in that temperament, and so makes efficient use of it; a hobbit does the same in higher ranks, and so using them is one way to make higher ranks, including especially the interesting rank three case, accessible for musical purposes. <br /> | ||
<br /> | <br /> | ||
Given a regular temperament and an equal temperament val v which supports (or belongs to) the temperament, there is a unique scale for the temperament, which can be tuned to any tuning of the temperament, containing v[1] notes to the octave.<br /> | Given a regular temperament and an equal temperament val v which supports (or belongs to) the temperament, there is a unique scale for the temperament, which can be tuned to any tuning of the temperament, containing v[1] notes to the octave.<br /> |